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Preface

The international conferences on Integral Methods in Science and Engineering
(IMSE) are biennial opportunities for academics and other researchers whose
work makes essential use of analytic or numerical integration methods to
discuss their latest results and exchange views on the development of novel
techniques of this type.

The first two conferences in the series, IMSE1985 and IMSE1990, were
hosted by the University of Texas–Arlington. At the latter, the IMSE con-
sortium was created and charged with organizing these conferences under the
guidance of an International Steering Committee. Subsequently, IMSE1993
took place at Tohoku University, Sendai, Japan, IMSE1996 at the University
of Oulu, Finland, IMSE1998 at Michigan Technological University, Houghton,
MI, USA, IMSE2000 in Banff, AB, Canada, IMSE2002 at the University of
Saint-Étienne, France, IMSE2004 at the University of Central Florida, Or-
lando, FL, USA, and IMSE2006 at Niagara Falls, ON, Canada. The IMSE
conferences are now recognized as an important forum where scientists and
engineers working with integral methods express their views about, and inter-
act to extend the practical applicability of, a very elegant and powerful class
of mathematical procedures.

A distinguishing characteristic of all the IMSE meetings is their general
atmosphere—a blend of utmost professionalism and a strong collegial-social
component. IMSE2008, organized at the University of Cantabria, Spain, and
attended by delegates from twenty-seven countries on five continents, main-
tained this tradition, marking another unqualified success in the history of
the IMSE consortium. For the smoothness and detail-perfect arrangements
throughout the conference, the participants and the Steering Committee
would like to express their special thanks to the Local Organizing Committee:

M. Eugenia Pérez (Departamento de Matemática Aplicada y Ciencias de
la Computación, ETSI Caminos, Canales y Puertos), Chairman;
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Miguel Lobo (Departamento de Matemáticas, Estad́ıstica y Computación,
Facultad de Ciencias);

Delfina Gómez (Departamento de Matemáticas, Estad́ıstica y Computa-
ción, Facultad de Ciencias).

The Local Organizing Committee and the Steering Committee also wish
to acknowledge the financial support received from the following institutions:

Universidad de Cantabria (in particular, Vicerrectorado de Investigación
y Transferencia del Conocimiento, Facultad de Ciencias, ETSI Caminos,
Canales y Puertos, Departamento de Matemáticas, Estad́ıstica y Computa-
ción, and Departamento de Matemática Aplicada y Ciencias de la Com-
putación);

Ministerio de Ciencia e Innovación (Ref. MTM2007-30182-E);
Sociedad Regional Cantabra de I+D+i (IDICAN. Ref. 25-2-2007);
i-MATH Consolider (MEC, Ref. C3-0087);
Caja de Burgos;
Consejeŕıa de Cultura, Turismo y Deporte del Gobierno de Cantabria;
Ayuntamiento de Santander;
Sociedad Española de Matemática Aplicada (SeMA).

Last but not least, they would like to express their thanks to MICINN
(MTM2005-07720) for partial support, to Antonio José González for his work
on the graphical design of the conference, to the colleagues—especially Doina
Cioranescu—involved in the coordination of the monographic sessions, and
to all the participants, whose presence and scientific activity in Santander
ensured the success of this meeting.

The next IMSE conference will be held in July 2010 in Brighton, UK.
Details concerning this event are posted on the conference web page,

http://www.cmis.brighton.ac.uk/imse2010

This volume contains four invited papers and twenty-seven contributed
peer-reviewed papers, arranged in alphabetical order by (first) author’s name.
The editors would like to thank the staff at Birkhäuser Boston for their effi-
cient handling of the publication process.

Tulsa, Oklahoma, USA Christian Constanda, IMSE Chairman

The International Steering Committee of IMSE:

C. Constanda (University of Tulsa), Chairman
M. Ahues (University of Saint-Étienne)
B. Bodmann (Federal University of Rio Grande do Sul)
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I. Chudinovich (University of Tulsa)
H. de Campos Velho (INPE, Saõ José dos Campos)
P. Harris (University of Brighton)
A. Largillier (University of Saint-Étienne)
S. Mikhailov (Brunel University)
A. Mioduchowski (University of Alberta)
D. Mitrea (University of Missouri-Columbia)
Z. Nashed (University of Central Florida)
A. Nastase (Rhein.-Westf. Technische Hochschule, Aachen)
M.E. Pérez (University of Cantabria)
S. Potapenko (University of Waterloo)
K. Ruotsalainen (University of Oulu)
S. Seikkala (University of Oulu)
O. Shoham (University of Tulsa)
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23 rue du Dr. Paul Michelon
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1

Homogenization of the Integro-Differential
Burgers Equation

A. Amosov1 and G. Panasenko2

1 Moscow Power Engineering Institute (Technical University), Moscow, Russia;
amosovaa@mpei.ru

2 Université de Saint-Étienne, Saint-Étienne 42023 Cedex 2, France;
grigory.panasenko@univ-st-etienne.fr

1.1 Introduction

The Burgers equation is a fundamental partial differential equation of fluid
mechanics and acoustics. It occurs in various areas of applied mathematics,
such as the modeling of gas dynamics and traffic flow (see [Ho50] and [Co51]).

We consider the integro-differential Burgers equation

∂u

∂x
− β ∂

2u

∂y2
+ α

∂

∂y
f(u) = ν

∂

∂y

y∫
−∞

∂u

∂y
(x, y′)e(y

′−y)/τ dy′. (1.1)

2

integral term on the right-hand side describes the relaxation (memory) effects.
The equation is derived by Rudenko and Soluyan from the state equation and
the motion equation for a medium with relaxation [RuSo75], see also [PoSo62].
In [La97] Chapter 5, Section 7 this equation is called the Witham–Rudenko
equation.

Here 0 < τ is a constant. Equation (1.1) is set in the domain Q = QX =
R× (0, X) and it is supplied with the initial condition for x = 0:

u(0, y) = ϕ(y), y ∈ R (1.2)

and the periodicity condition in variable y:

u(x, y + 1) = u(x, y), (x, y) ∈ Q. (1.3)

to their mathematical sense, i.e., y is the time (more exactly the sound beam

to the periodic regime in time. In the case when the medium is stratified, the
coefficients of the equation oscillate. If the scale of variation of properties is

time), and x stands for the vertical axis variable. Condition (1.3) corresponds

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_1,

Function f in the classical setting has the quadratic shape: f(u) = 0.5u ; the

   1

Let us mention that the physical sense of variables x and y is quite opposite

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010

C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 
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2 A. Amosov and G. Panasenko

much less than the macroscopic scale that is normally the height of the sound
source, then their ratio is a small dimensionless parameter δ, and the equation
takes the form

∂u

∂x
−β
(x
δ

) ∂2u

∂y2
+α
(x
δ

) ∂
∂y
f(u) = ν

(x
δ

) ∂
∂y

y∫
−∞

∂u

∂y
(x, y′)e(y

′−y)/τ dy′, (1.4)

where 0 < δ stands for the small parameter, the ratio of scales.
As far as we know, the mathematical analysis of problem (1.4), (1.2), (1.3)

was first developed in [PaPs08], although the equation there was not really
Burgers because there was a Lipschitz condition on function f :

|f(u1)− f(u2)| ≤ L|u1 − u2| ∀u1, u2 ∈ R,

and so, it could not have a quadratic shape. That is why equation (1.4) was
called there “the Burgers-type equation.” Apart from this, there were the
assumptions that f is a three times continuously differentiable function and
that the initial data ϕ ∈ H3

per(R).
In [PaPs08] an asymptotic approximation for the exact solution u of prob-

lem (1.4), (1.2), (1.3) was sought in the form

ua(x, y) = u0(x, y) + δ u1(x, y, ξ)|ξ=x/δ. (1.5)

Here u0 is a solution of the homogenized problem

∂u0

∂x
− 〈β〉∂

2u0

∂y2
+ 〈α〉 ∂

∂y
f(u0) = 〈ν〉 ∂

∂y

y∫
−∞

∂u0

∂y
(x, y′)e(y

′−y)/τ dy′, (1.6)

u0(0, y) = ϕ(y), y ∈ R, (1.7)
u0(x, y + 1) = u0(x, y), (x, y) ∈ Q (1.8)

with constant coefficients

〈α〉= lim
T→∞

1
T

T

∫
0
α(ξ) dξ, 〈β〉= lim

T→∞

1
T

T

∫
0
β(ξ) dξ, 〈ν〉= lim

T→∞

1
T

T

∫
0
ν(ξ) dξ (1.9)

and u1 is defined by the following formula:

u1(x, y, ξ) = β̃(ξ)
∂2u0

∂y2
(x, y)− α̃(ξ)

∂

∂y
f(u0(x, y))

+ ν̃(ξ)
∂

∂y

y∫
−∞

∂u0

∂y
(x, y′)e(y

′−y)/τ dy′, (1.10)

where

β̃(ξ) =
ξ

∫
0
[β(t)− 〈β〉] dt, α̃(ξ) =

ξ

∫
0
[α(t)− 〈α〉] dt. ν̃(ξ) =

ξ

∫
0
[ν(t)− 〈ν〉] dt.
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The following estimate was proved in [PaPs08] for the difference between the
exact solution and the asymptotic solution in the energy norm:

‖u− ua‖Vper(Q) ≤ Cδ1−d. (1.11)

The goal of this chapter is the analysis of the existence and uniqueness
of problem (1.1)–(1.3) in a general setting, when f ∈ C1(R), ϕ ∈ H1

per(R)
without any assumptions on the Lipschitz property of f . The central point in
this generalization is the proof of the maximum principle for problem (1.1)–
(1.3) (Theorem 1).

Moreover, we prove the estimate of error in the L2
per(Q)-norm:

‖u− u0‖L2
per(Q) ≤ Cδ1−d. (1.12)

If f ∈ C2(R), ϕ ∈ H2
per(R), then we prove the estimate

‖u− u0‖Vper(Q) ≤ Cδ1−d (1.13)

of the same order with respect to δ, as in (1.11), (1.12).
We emphasize here that the asymptotic approximation in estimates (1.12),

(1.13) is the solution u0 of the homogenized problem, and not approxima-
tion (1.5) containing the term (1.10).

A detailed statement of these results will be published in [AmPa09].

1.2 Notation

In what follows all derivatives are understood as weak derivatives, and we use
the following notation:

vx =
∂v

∂x
, vy =

∂v

∂y
, vyy =

∂2v

∂y2
, vxy =

∂2v

∂y∂x
, vyyy =

∂3v

∂y3
.

Let us introduce the functional spaces used in the chapter.
Let Cper(R) be the space of continuous on R periodic with period equal 1

functions. Denote
‖v‖Cper(R) = max

y∈[0,1]
|v(y)|.

Let L2
per(R) be the space of measurable on R periodic with period 1 func-

tions v having the finite norm

‖v‖L2
per(R) = ‖v‖L2(0,1).

Denote

(u, v) =
1
∫
0
u(y)v(y) dy.
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Let Hm
per(R) be the space of functions u ∈ L2

per(R) such that there exist

the derivatives
dku

dyk
∈ L2

per for all k = 1, . . . ,m.

Introduce the space Cper(Q) of continuous on Q functions v(x, y), periodic
in y with the period equal to 1. Define

‖v‖Cper(Q) = max
(x,y)∈[0,X]×[0,1]

|v(x, y)|.

Introduce the spaces

Lp,2per(Q) = Lp(0, X;L2
per(R)), L2

per(Q) = L2,2
per(Q),

Vper(Q) = C([0, X];L2
per(R)) ∩ L2(0, X;H1

per(R))

with the norms

‖u‖Lp,2
per(Q) =

∥∥‖u‖L2
per(R)

∥∥
Lp(0,X), ‖u‖L2

per(Q) = ‖u‖L2,2
per(Q),

‖u‖Vper(Q) = max
x∈[0,X]

‖u(x, ·)‖L2
per(R) + ‖uy‖L2

per(Q).

Denote
(u, v)Q = ∫

Q
u(x, y)v(x, y) dxdy.

Let H1,2
per(Q) be the space of functions u ∈ L2

per(Q) such that there exist
the derivatives ux, uyy ∈ L2

per(Q).
Define the integral operators J and J∗ on L2

per(R):

J [v](y) =
y

∫
−∞

v(y′)e(y
′−y)/τ dy′, J∗[v](y) =

∞
∫
y
v(y′)e(y−y′)/τ dy′.

Operator J∗ is the adjoint operator for J .

Note that using this notation we may rewrite equation (1.1) in the form

ux − βuyy + αf(u)y = νJ [uy]y.

1.3 The Integro-Differential Burgers Equation:Existence,
Uniqueness, and Smoothness of Solutions

Assume that the following conditions hold:

ϕ ∈ H1
per(R), ‖ϕ‖Cper(R) ≤ N, f ∈ C1(R), (1.14)
α, ν ∈ L2(0, X), β ∈ L∞(0, X), (1.15)

0< κ1≤ β(x)≤ κ2, ‖α‖L2(0,X)≤ κ2, 0≤ ν(x), ‖ν‖L2(0,X)≤ κ2. (1.16)
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Here κ1, κ2, N are some constants.
Let C = C(κ1, κ2, N) be the notation for non-decaying functions of pa-

rameters κ−1
1 , κ2, N . If these functions depend as well on function f or on

function f and on value X, then we will use the notation Cf = Cf (κ1, κ2, N)
or Cf,X = Cf,X(κ1, κ2, N), respectively. Arguments κ1, κ2, N will usually be
omitted.

The following version of the maximum principle holds for problem (1.1)–
(1.3).

Theorem 1 Assuming conditions (1.14)–(1.16) consider u ∈ H1,2
per(Q) the

solution of problem (1.1)–(1.3). The following estimate holds:

‖u‖Cper(Q) ≤ ‖ϕ‖Cper(R). (1.17)

Using Theorem 1 and the Galerkin method, we prove the following result
about the existence, uniqueness, and additional smoothness of the solution of
problem (1.1)–(1.3).

Theorem 2 Assume that conditions (1.14)–(1.16) hold. Then solution u ∈
H1,2
per(Q) of problem (1.1)–(1.3) exists, is unique, and satisfies estimate (1.17)

and estimate

‖ux‖L2
per(Q) + ‖uyy‖L2

per(Q) + ‖uy‖L∞,2
per (Q) ≤ Cf‖ϕy‖L2

per(R).

If, in addition,

ϕ ∈ H2
per(R), ‖ϕy‖L2

per(R) ≤ N, f ∈ C2(R), (1.18)

then uy ∈ H1,2
per(Q) and the following estimate holds:

‖uxy‖L2
per(Q) + ‖uyyy‖L2

per(Q) + ‖uyy‖L∞,2
per (Q) ≤ Cf‖ϕyy‖L2

per(R).

1.4 Stability of the Solution of Problem (1.1)–(1.3)

Let us formulate two results on the stability of the solution of problem (1.1)–
(1.3) with respect to the discrepancy. We need these results for the derivation
of the error estimate for an asymptotic approximation.

Let

fN (u) =

⎧⎨⎩
f(u), −N ≤ u ≤ N,

f(−N) + f ′(−N)(u+N), u < −N,
f(N) + f ′(N)(u−N), u > N.
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Theorem 3 Assume that conditions (1.14)–(1.16) hold and that there exists
r ∈ (2,∞] such that

α ∈ Lr(0, X), ‖α‖Lr(0,X) ≤ κ2.

Let u ∈ H1,2
per(Q) be a solution of problem (1.1)–(1.3), and let function v ∈

L2
per(Q) satisfy for all t ∈ (0, X] the following integral identity:

−(v, ψx + βψyy + νJ∗[ψy]y)Qt − (αfN (v), ψy)Qt =
(ϕ,ψ|x=0) + (ga, ψy)Qt − (gb, ψyy)Qt − (gc, J∗[ψy]y)Qt (1.19)

∀ψ ∈ H1,2
per(Qt), ψ|x=t = 0,

where ga ∈ L1,2
per(Q), gb ∈ L2

per(Q), gc ∈ L1,2
per(Q).

Then the following estimate holds:

‖v − u‖Q ≤ Cf,X,r
(
‖ga‖L1,2

per(Q) + ‖gb‖L2
per(Q) + ‖gc‖L1,2

per(Q)

)
. (1.20)

Theorem 4 Assume that conditions (1.14)–(1.16) hold. Let u ∈ H1,2
per(Q)

be a solution of problem (1.1)–(1.3), and function v ∈ L2(0, T ;H1
per(R)) for

t = X be a solution of integral identity (1.19).
Then u− v ∈ Vper(Q) and the following estimate holds:

‖v − u‖Vper(Q) ≤ Cf
(
‖ga‖L2

per(Q) + ‖gby‖L2
per(Q) + ‖gc‖L2

per(Q)

)
. (1.21)

1.5 Problem with Rapidly Oscillating Coefficients

Let βδ(x) = β(x/δ), αδ(x) = α(x/δ), νδ(x) = ν(x/δ), where δ > 0 is a small
parameter.

Assume that the following conditions hold (here R+ = (0,+∞)):

β ∈ L∞(R+), α, ν ∈ L2
loc(R

+), (1.22)
0 < κ1 ≤ β(ξ) ≤ κ2, ‖α‖L2(0,ξ) ≤ κ2ξ

1/2, ∀ξ ∈ R+, (1.23)

0 ≤ ν(ξ), ‖ν‖L2(0,ξ) ≤ κ2ξ
1/2 ∀ξ ∈ R+. (1.24)

It follows from (1.22)–(1.24) that βδ ∈ L∞(0, X), αδ, νδ ∈ L2(0, X), and

0<κ1≤ βδ(x)≤ κ2, ‖αδ‖L2(0,X)≤ κ2X
1/2, 0≤ νδ(x), ‖νδ‖L2(0,X)≤ k2X1/2.

So the results of Section 1.3 imply the following theorem.

Theorem 5 Assume that conditions (1.14), (1.22)–(1.24) hold. Then there
exists a unique solution u ∈ H1,2

per(Q) of problem (1.4), (1.2), (1.3), and it
satisfies the following estimates uniform with respect to δ:

‖u‖Cper(Q) ≤ ‖ϕ‖Cper(R),

‖ux‖L2
per(Q) + ‖uyy‖L2

per(Q) + ‖uy‖L∞,2
per (Q) ≤ Cf,X‖ϕy‖L2

per(R).
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1.6 The Homogenized Problem

Consider the homogenized problem (1.6)–(1.8). We have the following from
the results of Section 1.3.

Theorem 6 Assume that conditions (1.14), (1.22)–(1.24) hold and that there
exist limits (1.9). Then there exists a unique solution u0 ∈ H1,2

per(Q) of prob-
lem (1.6)–(1.8) and it satisfies the estimates

‖u0‖Cper(Q) ≤ ‖ϕ‖Cper(R),

‖u0x‖L2
per(Q) + ‖u0yy‖L2

per(Q) + ‖u0y‖L∞,2
per (Q) ≤ Cf,X‖ϕy‖L2

per(R).

If in addition conditions (1.18) hold then u0y ∈ H1,2
per(Q) and the following

estimate holds:

‖u0yx‖L2
per(Q) + ‖u0yyy‖L2

per(Q) + ‖u0yy‖L∞,2
per (Q) ≤ Cf,X‖ϕyy‖L2

per(R).

1.7 Error Estimates for the Asymptotic Approximation

Theorem 7 Assume that conditions (1.14), (1.22)–(1.24) are satisfied and
that limits (1.9) exist. Assume that the following estimates hold:

‖β̃‖L∞(0,ξ) ≤ Aξd, ‖α̃‖L2(0,ξ) ≤ Aξd+1/2, ‖ν̃‖L2(0,ξ) ≤ Aξd+1/2 ∀ξ ∈ R+

with some constants A > 0 and d ∈ [0, 1) and that there exists r ∈ (2,∞] such
that

‖α‖Lr(0,ξ) ≤ κ2ξ
1/r ∀ξ ∈ R+.

Then the following estimate holds:

‖u− u0‖L2
per(Q) ≤ ACf,X,r‖ϕy‖L2

per(R) δ
1−d. (1.25)

Theorem 8 Assume that conditions (1.18), (1.22)–(1.24) are satisfied and
that limits (1.9) exist. Assume that the following estimates hold:

‖β̃‖L∞(0,ξ) ≤ Aξd, ‖α̃‖L∞(0,ξ) ≤ Aξd, ‖ν̃‖L∞(0,ξ) ≤ Aξd ∀ξ ∈ R+

with some constants A > 0 and d ∈ [0, 1).
Then the following error estimate holds:

‖u− u0‖Vper(Q) ≤ ACf,X‖ϕyy‖L2
per(Q)δ

1−d. (1.26)

Proofs are based on Theorems 3, 4, and 5.

Remark 1. If coefficients β, α, ν are δ-periodical functions then d = 0 and
estimates (1.25), (1.26) have the following form:

‖u− u0‖L2
per(Q) ≤ ACf,X,r‖ϕy‖L2

per(R) δ,

‖u− u0‖Vper(Q) ≤ ACf,X‖ϕyy‖L2
per(Q)δ.
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2.1 Introduction

This chapter is concerned with the behavior of the eigenvalues and eigenfunc-
tions of the Laplace operator in bounded domains when the domain undergoes
a perturbation. It is well known that if the boundary condition that we are
imposing is of Dirichlet type, the kind of perturbations that we may allow in
order to obtain the continuity of the spectra is much broader than in the case
of a Neumann boundary condition. This is explicitly stated in the pioneer
work of Courant and Hilbert [CoHi53], and it has been subsequently clarified
in many works, see [BaVy65, Ar97, Da03] and the references therein among
others. See also [HeA06] for a general text on different properties of eigen-
values and [HeD05] for a study on the behavior of eigenvalues and in general
partial differential equations when the domain is perturbed.

In particular, with a Dirichlet boundary condition we may consider the case
where the fixed domain is a bounded “smooth” domain Ω0 ⊂ RN , N ≥ 2, and
the perturbed domain is Ωε in such a way that Ω0 ⊂ Ωε, that is, we consider
exterior perturbation of the domain. We may have perturbations of this type
where |Ωε \ Ω0| ≥ η for some fixed η > 0, and still we have the convergence
of the eigenvalues and eigenfunctions. Moreover, we may even have the case
|Ωε \ Ω0| → +∞, and still we have the convergence of the eigenvalues and
eigenfunctions.

To obtain an example of this situation is not too difficult. If we consider,
for instance, Ω ⊂ R2, given by Ω0 = (0, 1)× (−1, 0) and

Ωε(a) = {(x, y) : 0 < x < 1,−1 < y < a(1 + sin(x/ε))} ⊃ Ω0

where a > 0 is fixed, we can easily see that the eigenvalues and eigenfunctions
of the Laplace operator with Dirichlet boundary condition in Ωε converge
to the ones in Ω0. Moreover, |Ωε| = |Ω0| +

∫ 1
0 a(1 + sin(x/ε))dx ∼ |Ω0| + a

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_2,

   9C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 
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for ε small enough. Moreover, it is not difficult to modify the example above
choosing the constant a dependent with respect to ε in such a way that a(ε) →
+∞ and such that the eigenvalues and eigenfunctions inΩε(a(ε)) still converge
to the ones in Ω0 and |Ωε(a(ε)) \ Ω0| → +∞. This example shows that the
class of perturbations that we may allow to get the “spectral convergence” of
the Dirichlet Laplacian is very broad and that knowing that the eigenvalues
and eigenfunctions of the Dirichlet Laplacian converge does not have many
“geometrical” restrictions for the domains.

The case of the Neumann boundary condition is much more subtle. As a
matter of fact, for the situation depicted above, it is not true that the spectra
converge. So we ask ourselves the following questions: if we have a domain Ω0
and consider a perturbation of it given by Ω0 ⊂ Ωε, where we assume that
all the domains are smooth and bounded although not necessarily uniformly
bounded on the parameter ε, then if we have the convergence of the eigenvalues
and eigenfunctions,

(Q1) should it be true that |Ωε \Ω0| ε→0−→ 0?

(Q2) should it be true that dist(Ωε, Ω0) = supx∈Ωε
dist(x,Ω0)

ε→0−→ 0?

We will see that the answer to the first question is Yes and, surprisingly,
the answer to the second one is No.

Observe that, as the example above shows, the answer to both questions
for the case of the Dirichlet boundary condition is No.

In Section 2.2 we recall a result from [Ar95, ArCa04] which provides a nec-
essary and sufficient condition for the convergence of eigenvalues and eigen-
functions when the domain is perturbed. In Section 2.3 we provide an answer
to question (Q1), and in Section 2.4 we provide an answer to question (Q2).

2.2 Characterization of the Spectral Convergence of the
Neumann Laplacian

In this section we give a necessary and sufficient condition for the convergence
of the eigenvalues and eigenfunctions of the Laplace operator with Neumann
boundary conditions. We refer to [Ar95] and [ArCa04] for a general result in
this direction, in even a more general context than the one in this chapter. In
our particular case, we will consider the following situation: let Ω0 be a fixed
bounded smooth (Lipschitz is enough) open set in RN with N ≥ 2 and let Ωε
be a family of domains such that, for each fixed 0 < ε ≤ ε0, Ωε is bounded
and smooth with Ω0 ⊂ Ωε.

Let us define now what we mean by the spectral convergence. For 0 ≤
ε ≤ ε0, we denote by {λεn}∞

n=1 the sequence of eigenvalues of the Neumann
Laplacian in Ωε, always ordered and counting its multiplicity, and we denote
by {φεn}∞

n=1 a corresponding set of orthonormal eigenfunctions in Ωε. Also,
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since we are considering domains which vary with the parameter ε, and we will
need to compare functions defined in Ω0 and in Ωε, we introduce the following
space H1

ε = H1(Ω0) ⊕ H1(Ωε \ Ω̄0), that is, χ ∈ H1
ε if χ|Ω0 ∈ H1(Ω0) and

χ|(Ωε\Ω̄0) ∈ H1(Ωε \ Ω̄0), with the norm

‖χ‖2H1
ε

= ‖χ‖2H1(Ω0) + ‖χ‖2H1(Ωε\Ω̄0)
.

We have that H1(Ωε) ↪→ H1
ε and in a natural way we have that if χ ∈

H1(Ω0) via the extension by zero outside Ω0 we have χ ∈ H1
ε . Hence, with

certain abuse of notation we may say that if χε ∈ H1
ε , 0 ≤ ε ≤ ε0, then

χε
ε→0−→ χ0 in H1

ε if ‖χε − χ0‖H1(Ω0) + ‖χε‖H1(Ωε\Ω0)
ε→0−→ 0.

Definition 1. We will say that the family of domains Ωε converges spectrally
to Ω0 as ε→ 0 if the eigenvalues and eigenprojectors of the Neumann Lapla-
cian behave continuously at ε = 0. That is, for any fixed n ∈ N we have that
λεn → λ0

n as ε → 0, and for each n ∈ N such that λ0
n < λ0

n+1 the spectral
projections P εn : L2(RN ) → H1(Ωε), P εn(ψ) =

∑n
i=1(φ

ε
i , ψ)L2(Ωε)φ

ε
i , satisfy

sup{‖P εn(ψ)− P 0
n(ψ)‖H1

ε
, ψ ∈ L2(RN ), ‖ψ‖L2(RN ) = 1} ε→0−→ 0 .

The convergence of the spectral projections is equivalent to the following:
for each sequence εk → 0 there exists a subsequence, that we denote again
by εk, and a complete system of orthonormal eigenfunctions of the limiting
problem {φ0

n}∞
n=1 such that ‖φεkn − φ0

n‖H1
εk
→ 0 as k →∞.

In order to write down the characterization, we need to consider the fol-
lowing quantity:

τε = min
φ∈H1(Ωε)

φ=0 in Ω0

∫
Ωε

|∇φ|2∫
Ωε

|φ|2
. (2.1)

Observe that τε is the first eigenvalue of the following problem with a combi-
nation of Dirichlet and Neumann boundary conditions:⎧⎪⎪⎨⎪⎪⎩

−Δu = τu , Ωε \ Ω̄0 ,

u = 0 , ∂Ω0 ,

∂u

∂n
= 0 , ∂Ωε \ ∂Ω0 .

We can prove the following assertion.

Proposition 1. A necessary and sufficient condition for the spectral conver-
gence of Ωε to Ω0 is

τε
ε→0−→ +∞ . (2.2)
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We refer to [Ar95] and [ArCa04] for a proof of this result.

Remark 1. The fact that Ω0 ⊂ Ωε can be relaxed. It is enough asking that for
each compact set K ⊂ Ω0 there exists ε(K) such that K ⊂ Ωε for 0 < ε ≤
ε(K), see [ArCa04].

2.3 Measure Convergence of the Domains

In this section we provide an answer to the first question. Observe that in
Proposition 1 we do not require that |Ωε \ Ω0| ε→0−→ 0. However, we have the
following.

Corollary 1. In the situation above if Ωε converges spectrally to Ω0, then
necessarily |Ωε \Ω0| ε→0−→ 0.

Proof. This result is proved in [ArCa04], but for the sake of completeness and
since it is a simple proof, we include it here.

If this were not true, then we would have a positive η > 0 and a se-
quence εk → 0 such that |Ωεk \ Ω0| ≥ η. Let ρ = ρ(η) be a small num-
ber such that |{x ∈ RN \ Ω0, dist(x,Ω0) ≤ ρ}| ≤ η/2. This implies that
|{x ∈ Ωεk , dist(x,Ω0) ≥ ρ}| ≥ η/2. Let us construct a smooth function γ
with γ = 0 in Ω0, and γ(x) = 1 for x ∈ RN \ Ω0 with dist(x,Ω0) ≥ ρ. Then
obviously γ ∈ H1(Ωεk) with ‖∇γ‖L2(Ωεk

) ≤ C and ‖γ‖L2(Ωεk
) ≥ (η/2)

1
2 .

This implies that τεk is bounded. Hence, it is not true that τε
ε→0−→ +∞ and,

therefore, from Proposition 1, we do not obtain the spectral convergence.

In particular, this result implies that the answer to question (Q1) is af-
firmative. That is, if we have the convergence of Neumann eigenvalues and
eigenfunctions, necessarily we have that |Ωε \Ω0| ε→0−→ 0.

2.4 Distance Convergence of the Domains

In this section we will provide an answer to question (Q2), and we will see
that the answer is No. We will prove this by constructing an example of a fixed
domain Ω0 and a sequence of domains Ωε with Ω0 ⊂ Ωε with the property that
dist(Ωε, Ω0) does not converges to 0, but the eigenvalues and eigenfunctions
of the Laplace operator with Neumann boundary conditions in Ωε converge
to the ones in Ω0, see Definition 1.

As a matter of fact, in [ArCa04, Section 5.2] a very particular example of
a dumbbell domain (two disconnected domains joined by a thin channel) is
provided so that the eigenvalues from the dumbbell converge to the eigenvalues
of the two disconnected domains and no spectral contribution from the channel
is observed. In this chapter we will obtain a family of channels for which the



www.manaraa.com

2 Geometric versus Spectral Convergence 13

same phenomenon occurs, see Corollary 2, and we will provide a proof different
from the one given in [ArCa04].

Let us consider a fixed domain Ω0 ⊂ RN which satisfies Ω0 ⊂ {x ∈
RN , x1 < 0} and such that

Ω0 ∩ {x = (x1, x
′) ∈ R× RN−1,−1 < x1 < 1, |x′| ≤ ρ}

= {x = (x1, x
′) ∈ R× RN−1,−1 < x1 < 0, |x′| ≤ ρ}

for some fixed ρ > 0.
We will construct Ωε as Ωε =int(Ω̄0 ∪ R̄ε), where Rε is given as follows:

Rε = {(x1, x
′) ∈ R× RN−1 : 0 < x1 < L, |x′| < gε(x1)}, (2.3)

where the function gε will be chosen so that gε > 0, gε ∈ C1([0, L]), and
gε → 0 uniformly on [0, L]; see Figure 2.1. For the sake of notation, we denote
by Γ ε0 = ∂Rε ∩ {x1 = 0} and Γ εL = ∂Rε ∩ {x1 = L}.

Fig. 2.1. The exterior perturbation Rε. The thick line refers to the supplementary
Dirichlet condition in the problem (2.4), while Neumann boundary conditions are
imposed elsewhere.

We refer to [Ra95] for a general reference on the behavior of solutions of
partial differential equations on thin domains. See also the recent survey [Gr08]
for a study on the spectrum of the Laplacian on thin tubes in various settings,
and for many related references.

Observe that if L is fixed, then dist(Ωε, Ω0) = L for each 0 < ε ≤ ε0.
Moreover, we will show that for certain choices of gε we obtain the spectral
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convergence of the Laplace operator. To prove this result, we use Proposition 1
and show that τε → +∞. Notice that τε, defined in (2.1) is the first eigenvalue
of ⎧⎪⎪⎨⎪⎪⎩

−Δu = τu , Rε ,

u = 0 , Γ ε0 ,

∂u

∂n
= 0 , ∂Rε \ Γ ε0 .

(2.4)

Since we have Neumann boundary conditions on the lateral boundary
of Rε, there clearly exist profiles of gε for which τε remains uniformly bounded
as ε→ 0. In fact, a simple trial-function argument shows that τε ≤ π2/(2L)2

whenever gε(s) ≥ gε(0) for every s ∈ [0, L]. The idea to get τε → +∞ consists
in choosing a rapidly decreasing function s �→ gε(s), which enables one to
get a large contribution to τε coming from the longitudinal energy due to the
approaching Dirichlet and Neumann boundary conditions in the limit ε→ 0.
Let us notice that a similar trick to employ the repulsive contribution of such a
combination of the boundary conditions has been used recently in [KoKr08] to
establish a Hardy-type inequality in a waveguide; see also [Kr09] for eigenvalue
asymptotics in narrow curved strips with combined Dirichlet and Neumann
boundary conditions. In our case, we are able to show the following.

Proposition 2. With the notation above, for any function γ ∈ C2([0, L])
satisfying

0 < α0 ≤ γ ≤ α1 < 1, γ̇(L) ≤ 0, and γ̈ ≥ α2 > 0 (2.5)

for some positive numbers α0, α1, and α2, if we define gε = γ1/ε we have that
τε

ε→0−→ +∞.
In particular, applying Proposition 1 we obtain the convergence of the

eigenvalues and eigenfunctions of the Neumann Laplacian in Ωε to the ones
in Ω0.

Remark 2. Observe that a function γ satisfying (2.5) necessarily satisfies
γ̇(s) < 0 for 0 ≤ s < L. Hence, the function γ is decreasing.

Proof. Since τε is given by minimization of the Rayleigh quotient,

τε = inf
φ∈H1(Rε)

φ=0 in Γ ε
0

∫
Rε

|∇φ|2∫
Rε

|φ|2
,

we analyze the integral
∫
Rε
|∇φ|2 for a smooth real-valued function φ with

φ = 0 in a neighborhood of Γ ε0 . We have∫
Rε

|∇φ|2 =
∫ L

0

∫
|x′|<gε(x1)

(|φx1 |2 + |∇x′φ|2) dx′dx1.
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Considering the change of variables x1 = y1, x′ = gε(y1)y′ which trans-
forms (x1, x

′) ∈ Rε into (y1, y′) ∈ Q, where Q is the cylinder Q = {(y1, y′) :
0 < y1 < L, |y′| < 1} and performing this change of variables in the integral
above, elementary calculations show that∫

Rε

|∇φ|2 =
∫
Q

⎡⎣(ϕy1 − ġεgε
N∑
i=2

yiϕyi

)2

+
1
g2ε

N∑
i=2

|ϕyi
|2
⎤⎦ gN−1

ε dy,

where ϕ(y) = φ
(
y1, gε(y1)y′).

Writing the above expression in terms of the new function ψ(y) =
gε(y1)

N−1
2 ϕ(y) so that

g(N−1)/2
ε ϕyi

= ψyi
, i = 2, . . . , N ,

g(N−1)/2
ε ϕy1 = −N − 1

2
ġε
gε
ψ + ψy1 ,

we get∫
Rε

|∇φ|2

=
∫
Q

⎡⎣(−N − 1
2

ġε
gε
ψ + ψy1 −

ġε
gε

N∑
i=2

yiψyi

)2

+
1
g2ε

N∑
i=2

|ψyi
|2
⎤⎦ dy

=
∫
Q

[(
−N − 1

2
ġε
gε
ψ

)2

+

(
ψy1 −

ġε
gε

N∑
i=2

yiψyi

)2

− (N − 1)
ġε
gε
ψψy1

+ (N − 1)
ġ2ε
g2ε

N∑
i=2

yiψyi
ψ +

1
g2ε

N∑
i=2

|ψyi
|2
]
dy,

≥
∫
Q

[(
N − 1

2

)2
ġ2ε
g2ε
ψ2 − (N − 1)

ġε
gε
ψψy1

+ (N − 1)
ġ2

g2ε

N∑
i=2

yiψyi
ψ +

1
g2ε

N∑
i=2

ψ2
yi

]
dy

where we have used (ψy1 −
∑N

i=2 yiψyi

ġε

gε
)2 ≥ 0. Via integration by parts in

the second and third terms above, we get∫
Q

− (N − 1)
ġε
gε
ψψy1dy =

∫
|y′|<1

∫ L

0
− (N − 1)

ġε
2gε

(ψ2)y1dy1dy
′

=
∫

|y′|<1

(
−
[
(N − 1)

ġε
2gε
ψ2
]y1=L
y1=0

+
∫ L

0
(N − 1)

(
ġε
2gε

)′
ψ2dy1

)
dy′

= −
∫

|y′|<1
(N − 1)

ġε(L)
2gε(L)

ψ2(L, y′)dy′ +
∫
Q

N − 1
2

(
g̈ε
gε
− ġ

2
ε

g2ε

)
ψ2dy
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and∫
Q

(N − 1)
ġ2ε
g2ε

N∑
i=2

yiψyiψdy =
∫ L

0
(N − 1)

ġ2ε
g2ε

N∑
i=2

∫
|y′|<1

yi
1
2
(ψ2)yidy

′dy1

=
∫ L

0

N − 1
2

ġ2ε
g2ε

(∫
|y′|=1

ψ2 − (N − 1)
∫

|y′|<1
ψ2dy′

)
dy1 .

Hence, if we require that ġε(L) ≤ 0, we have∫
Rε

|∇φ|2 ≥
∫
Q

[
N − 1

2
g̈ε
gε
−
((

N − 1
2

)2

+
N − 1

2

)
ġ2ε
g2ε

]
ψ2dy

+
∫ L

0

N − 1
2

ġ2ε
g2ε

(∫
|y′|=1

ψ2dy′
)
dy1 +

∫
Q

1
g2ε

N∑
i=2

ψ2
yi
dy .

(2.6)

The last two terms in this expression can be written as∫ L

0

1
g2ε (y1)

(∫
|y′|≤1

|∇y′ψ|2 +
N − 1

2
ġ2ε (y1)

∫
|y′|=1

ψ2

)
dy1

and we have that∫
|y′|≤1

|∇y′ψ|2 +
N − 1

2
ġ2ε

∫
|y′|=1

ψ2 ≥ ρ
∫

|y′|≤1
ψ2

with ρ = ρ(y1) being the first eigenvalue of the problem⎧⎨⎩
−Δy′ψ = ρψ , |y′| < 1 ,

∂ψ

∂n
+
N − 1

2
ġ2ε (y1)ψ = 0 , |y′| = 1 ,

where n denotes the outward unit normal vector field to the (N − 2)-
dimensional unit sphere S1 = {y′ ∈ RN−1 : |y′| = 1}.

We claim that if we denote by λ(η) the first eigenvalue of⎧⎨⎩
−Δy′ψ = λψ , |y′| < 1 ,

∂ψ

∂n
+ ηψ = 0 , |y′| = 1 ,

we have that λ(η)
η → |S1|

|B1| as η → 0, where B1 is the (N − 1)-dimensional unit
ball and S1 its surface, which satisfy |S1| = (N − 1)|B1|. As a matter of fact,
by a standard continuity result, we know that λ(η) → 0 and its eigenfunction
ψη, which is radially symmetric, converges to the constant function 1/

√
|B1|,

which is the first eigenfunction of the Neumann eigenvalue problem. But

λ(η) =
∫
B1

|∇y′ψη|2 + η
∫
S1

|ψη|2 ≥ η
∫
S1

|ψη|2,
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which implies that
λ(η)
η

≥
∫
S1

|ψη|2 →
|S1|
|B1|

.

Moreover, using ψ = 1/
√
|B1| as a test function in the Rayleigh quotient

for λ(η), we immediately obtain λ(η) ≤ η |S1|
|B1| . This proves our claim. In

particular, given δ > 0 small, we can choose η0 = η0(δ) such that λ(η) >
(N − 1− δ)η for 0 < η ≤ η0.

Therefore, if we choose the function gε such that ġε(y1) → 0 uniformly in
y1 ∈ [0, L], we have that ρ(y1) ≥ (N−1)(N−1−δ)

2 ġε
2(y1) for ε small enough.

Hence,∫
Rε

|∇φ|2 ≥
∫
Q

{
N − 1

2
g̈ε
gε
−
[(

N − 1
2

)2

− (N − 1)(N − 1− δ)
2

+
N − 1

2

]
ġε

2

g2ε

}
ψ2dy

=
N − 1

2

∫
Q

{
g̈ε
gε
−
[
N − 1

2
− (N − 1− δ) + 1

]
ġ2ε
g2ε

}
ψ2dy

and observe that the number κ = N−1
2 − (N − 1− δ) + 1 is strictly less than

one for all values of N ≥ 2 choosing a fixed and small δ > 0. If we denote

mε = inf
0≤y1≤L

(
g̈ε
gε
− κ ġ

2
ε

g2ε

)
,

then ∫
Rε

|∇φ|2 ≥ N − 1
2

mε

∫
Q

ψ2 =
N − 1

2
mε

∫
Rε

φ2 .

Consequently, τε ≥ N−1
2 mε.

Let us see that we can make a choice of the family of functions gε, satisfying
the two previous conditions we have imposed, that is, ġε(L) ≤ 0 and ġε(y1) →
0 uniformly in 0 ≤ y1 ≤ L such that mε → +∞ as ε→ 0.

Let us choose a function γ ∈ C2([0, L]) satisfying (2.5) and let gε = γ1/ε.
Then, we have

ġε =
1
ε
γ

1
ε −1γ̇ , g̈ε =

1
ε
(
1
ε
− 1)γ

1
ε −2γ̇2 +

1
ε
γ

1
ε −1γ̈ ,

and simple calculations show that

g̈ε
gε
− κ ġ

2
ε

g2ε
=

[
1
ε
(
1
ε
− 1)− κ

(
1
ε

)2
](

γ̇

γ

)2

+
γ̈

εγ
≥ α2

α0

1
ε

for ε > 0 small enough so that 1
ε (

1
ε − 1) − κ

( 1
ε

)2 ≥ 0. This shows that
mε → +∞ and it proves the proposition.
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Remark 3. Now that we have been able to construct a thin domain Rε as
in (2.3) such that τε

ε→0−→ +∞, we can construct another thin domain R̃ε such
that its “length” goes to infinity, its width goes to zero, and still τ̃ε

ε→0−→ +∞,
where τ̃ε is the first eigenvalue of (2.4) in R̃ε instead of Rε.

For this, let Rε be a thin domain constructed as in Proposition 2 and let
ρε be a sequence with ρε → +∞ such that τε

ρ2ε
→ +∞ and α1/ε

1 ρε → 0. Define

R̃ε = ρεRε, that is,

R̃ε = {(x1, x
′) : 0 < x1 < ρεL, |x′| < ρεgε(x1)} ,

then 0 < ρεgε(x1) ≤ α1/ε
1 ρε

ε→0−→ 0 and τ̃ε = τε

ρ2ε

ε→0−→ +∞.

Observe that if we also require a Dirichlet boundary condition in Γ εL, we
can relax the conditions on γ in Proposition 2 and in particular the condition
γ̇(L) ≤ 0 can be dropped. Hence, we can show the following.

Corollary 2. With the notation above, for any function γ ∈ C2([0, L]) satis-
fying

0 < α0 ≤ γ ≤ α1 < 1, and γ̈ ≥ α2 > 0

for some positive numbers α0, α1, and α2, if we define gε = γ1/ε we have
τ̃ε

ε→0−→ +∞, where τ̃ ε is the first eigenvalue of⎧⎪⎪⎨⎪⎪⎩
−Δu = τu , Rε ,

u = 0 , Γ ε0 ∪ Γ εL ,
∂u

∂n
= 0 , ∂Rε \ (Γ ε0 ∪ Γ εL) .

Proof. This follows easily by a Neumann bracketing argument. More precisely,
from the hypotheses, γ̇ is a strictly increasing function. Hence, either γ is
strictly monotone in (0, L), or there exists a unique L∗ ∈ (0, L) such that
γ̇(L∗) = 0.

In the first case, if γ is decreasing (respectively increasing) we substitute
the Dirichlet boundary condition at Γ εL (respectively at Γ ε0 ) by a Neumann
one. Then the new eigenvalue problem gives rise to τε defined exactly in the
same way as (2.4) (modulo possibly a mirroring of Rε), and we have τ̃ε ≥
τε → +∞ as ε→ 0.

In the second case, we cut the domain Rε in two domains R0
ε = Rε ∩ {0 <

x1 < L
∗}, R1

ε = Rε ∩ {L∗ < x1 < L}. We know that τ̃ε ≥ inf{τ0
ε , τ

1
ε }, where

τ0
ε and τ1

ε are the corresponding eigenvalues in R0
ε and R1

ε with a Neumann
boundary condition imposed at the newly created boundary Rε ∩ {x1 = L∗}
on both domains. In both domains we can apply Proposition 2 as in the first
case so that τ0

ε , τ
1
ε
ε→0−→ +∞, which implies τ̃ε → 0.

Remark 4. This corollary recovers and generalizes the results from Section 5.2
in [ArCa04].
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[KoKr08] Kovař́ık, H., Krejčǐŕık, D.: A Hardy inequality in a twisted Dirichlet-
Neumann waveguide. Math. Nachr., 281, 1159–1168 (2008).
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3.1 Introduction

This chapter is concerned with the scattering of elastic point sources by a
bounded obstacle, as well as with a related near-field inverse problem for small
scatterers. We consider the Dirichlet problem, where the displacement field is
vanishing on the surface of the scatterer. A dyadic formulation for the afore-
mentioned scattering problem is considered in order to gain the symmetry–
compactness of the dyadic analysis [TAI94].

For acoustic and electromagnetic scattering, results on incident waves
generated by a point source appear in [DK00], [AMS02]; see also references
therein. In all these studies, scattering relations by point sources are estab-
lished; related simple inversion algorithms for small scatterers can be found
in [AMS01]. For elasticity, related problems such as the location and identi-
fication of a small three-dimensional elastic inclusion, using arrays of elastic
source transmitters and receivers, are considered in [AK04], [ACI08].

This chapter provides results on the direct scattering problem by point-
generated elastic waves for the three-dimensional elastic case. Further, a
related near-field inversion algorithm for a small rigid sphere in the low-
frequency case is established, where the key idea is to measure the scattered
field for various point-source locations.

3.2 Governing Equations and Fundamental Solution

In this section, we present the fundamental equations of linearized elastic-
ity and the spectral Navier equation which governs the propagation of time-

isotropic and homogeneous elastic medium with Lamé constants λ, μ and mass
density �. The Navier equation of the dynamic theory of linearized elasticity
is written as [KU65]

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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harmonic waves in an elastic medium. We assume a three-dimensional infinite
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μΔŨ(r,t) + (λ+ μ) grad div Ũ(r,t) = �
∂2

∂t2
U(r, t). (3.1)

Assuming the time-spectral decomposition

Ũ(r,t) = ũ(r) e−iωt, (3.2)

where the circular frequency ω > 0 denotes the Fourier dual variable of t, and
the tilde ∼ is used to denote dyadic fields, we obtain the spectral (reduced)
Navier equation

c2sΔũ(r) + (c2p − c2s) grad div ũ(r) + ω2ũ(r) = 0̃, (3.3)

where cp, cs are the phase velocities of the longitudinal and the transverse
wave, respectively, given by

cp =

√
λ+ 2μ
�

, cs =
√
μ

�
. (3.4)

An equivalent form of equation (3.3) is given by

μΔũ(r) + (λ+ μ) grad div ũ(r) + �ω2ũ(r) = 0̃. (3.5)

Using the following abbreviation:

Δ∗ := μΔ+ (λ+ μ) grad div, (3.6)

an alternative form of equation (3.5) (which will be considered from now on)
is given by

(Δ∗ + �ω2) ũ(r) = 0̃. (3.7)

As is well known, under the following assumptions for the Lamé constants:

μ > 0, λ+ 2μ > 0,

it can be proved that the Navier equation is uniformly strictly elliptic; hence,
the medium sustains both longitudinal and transverse waves.

We note here that any complex-valued solution ũ to the Navier equation
(the displacement field) is decomposed as (Helmholtz decomposition)

ũ(r) = ũp(r) + ũs(r), (3.8)

where ũp(r) is the longitudinal part, while ũs(r) is the transverse one. It is
well known that ũp(r) and ũs(r) satisfy the Helmholtz equations

(Δ+ k2
p) ũ

p(r) = 0 and (Δ+ k2
s) ũ

s(r) = 0, (3.9)

respectively. The angular frequency ω is related to the phase velocities cp and
cs via the relations
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ω = kp cp = csks, (3.10)

where kp = 2π/λp and ks = 2π/λs are the wave numbers for the longitudi-
nal and the transverse waves, respectively, and λp, λs are the corresponding
wavelengths.

It is well known that the free-space Green’s dyadic of the Navier equa-
tion (3.7) is

Γ̃(r, r′) = − ikp
4π�ω2 gradr grad�

r

eikp|r−r′|
ikp |r− r′|

+
iks

4π�ω2 (gradr grad�
r + k2

s Ĩ)
eiks|r−r′|
iks |r− r′| , (3.11)

where “� ” denotes transposition, and Ĩ is the identity dyadic.

3.3 The Direct Scattering Problem

Let Bi be an open bounded region in RI 3 with a smooth boundary ∂B. The set
Bi will be referred to as the scatterer, while the complement of Bi, which will
be denoted by B, is characterized by the Lamé constants λ, μ and density �. In
what follows we consider the direct scattering problem for the case of Dirichlet
data and C2-boundary. Other boundary conditions (Neumann, transmission)
have been studied in [ASS08], [ASS].

We assume that our scatterer is irradiated by a dyadic incident wave due
to a source at a point a, i.e.,

ũinc
a (r) = − ikp

ω2 gradr grad�
r h(kpε) +

iks
ω2 (gradr grad�

r +k2
s Ĩ)h(ksε), r �= a,

(3.12)
where ε := |r− a| and the function h(x) := eix/(ix) is the spherical Hankel
function of the first kind and zero order. We can prove that when a = |a| → ∞,
the incident point-source field (3.12) reduces to a dyadic plane wave with
direction of propagation −â, i.e.,

ũinc(r;−â) = Ap (â⊗ â) e−ikp r·â +As(̃I− â⊗ â) e−iks r·â, (3.13)

where Ap, As are constants which stand for the corresponding amplitudes,
given by

Ap :=
1

λ+ 2μ
eikpa

a
and As :=

1
μ

eiksa

a
. (3.14)

Note that the first term on the right-hand side of (3.13) describes the incident
longitudinal plane wave, while the second one describes the incident transverse
plane wave.
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We now describe the scattering process, which has to deal with the dis-
turbance that a given obstacle causes upon the propagation of a known wave
field. This disturbance for a rigid (Dirichlet boundary condition) scatterer or
a cavity (Neumann boundary condition) is expressed by the generation of a
scattered dyadic field corresponding to the point-source incident field at a; de-
noted by ũsct

a (r). Then the total field ũtot
a (r) in the exterior B of the scatterer

is the superposition of the incident and the scattered wave, i.e.,

ũtot
a (r) = ũinc

a (r) + ũsct
a (r) , r ∈ B.

In addition, the scattered dyadic field ũsct
a (r) due to the Helmholtz decompo-

sition is written as
ũsct
a (r) = ũsct,p

a (r) + ũsct,s
a (r).

The differential equation that the aforementioned displacement field satisfies
in the region B is given by

Δ∗ũsct
a (r) + �ω2 ũsct

a (r) = 0̃, r ∈ B, (3.15)

where the differential operator Δ∗ is defined in (3.6). We introduce now the
direct scattering problem which is mathematically described by the following
boundary value problem: For a given point-source incident field at a, find a
solution ũsct

a ∈ C2(B) ∩ C1(B), such that

Δ∗ ũsct
a (r) + �ω2 ũsct

a (r) = 0̃, r ∈ B (3.16)

ũsct
a (r) = −ũinc

a (r), r ∈ ∂B (3.17)

lim
r→∞

ũsct, β
a = 0̃, r = |r|, β = p, s, (3.18)

lim
r→∞

r (
∂ũsct, β

a

∂r
− ikβ ũsct, β

a ) = 0̃, r = |r|, β = p, s, (3.19)

where relations (3.18)–(3.19) are the well-known radiation conditions which
hold uniformly for all directions r = |r|.

We continue the study of our scattering problem, presenting the integral
representation for radiating solutions ũsct

a ∈ C2(B) ∩ C1(B) of the Navier
equation (3.7). The latter is obtained (with the use of Betti’s formula) and is
given by

ũsct
a (r) =

∫
∂B

[(
T(r′)Γ̃(r, r′)

)�
· ũsct

a (r′)− Γ̃(r, r′) ·T(r′)ũsct
a (r′)

]
ds(r′),

(3.20)
where the superscript denotes the action of the differential operator on the
indicated variable, and T denotes the surface stress operator defined by

T = 2μ n̂r · grad + λ n̂r div + μ n̂r × curl (3.21)
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with n̂r being the outward unit normal vector on the C 2-boundary ∂B at the
point r, and r ∈ B. Using now asymptotic analysis for Γ̃(r, r′), the relations
for the far-field patterns of the longitudinal and transverse parts, respectively,
of the fundamental dyadic Γ̃(r, r′) are given by

Γ̃p∞(r, r′) =
ikp

λ+ 2μ
(r̂⊗ r̂) e−ikpr′ ·̂r, r = |r| → ∞, (3.22)

Γ̃s∞(r, r′) =
iks
μ

(̃I− r̂⊗ r̂ ) e−iksr′ ·̂r, r = |r| → ∞, (3.23)

where “⊗” is the juxtaposition between two vectors (this gives a dyadic), and
the dyadics r̂ ⊗ r̂ and Ĩ − r̂ ⊗ r̂ in (3.22) and (3.23) present the radial and
tangential behavior of the longitudinal and transverse parts, respectively, of
Γ̃(r, r′) far away from the scatterer at the radiation zone.

With the aid of (3.22)–(3.23) and the integral representation (3.20), any
radiating solution has the asymptotic behavior of the form

ũsct
a (r) = ũ∞,p

a (r̂)
eikpr

ikpr
+ ũ∞,s

a (r̂)
eiksr

iksr
+O(r−2), r = |r| → ∞, (3.24)

uniformly with respect to r̂ = r
r ∈ Ω, where Ω is the unit sphere. The co-

efficients of the terms eikβr

ikβr
, β = p, s are the corresponding dyadic far-field

patterns, which are analytic functions defined on the unit sphere Ω in RI 3,
and are known as the longitudinal and the transverse far-field patterns, re-
spectively.

A comprehensive account of results in linear elasticity can be found
in [G72]. Existence and uniqueness of the above direct scattering prob-
lem (3.16)–(3.19) have been proved, e.g., in [KU65], [KGBB]. It is well known
that, in order to reformulate the direct scattering problem in integral form, we
can follow either the direct method, based on Betti’s formulae, or the indirect
method, using layer potentials; for the use of the boundary integral equations
method in the study of a variety of problems, see the recent book [HW08].

The problem of scattering of elastic spherical waves by a rigid body, a
cavity, or a penetrable obstacle in three-dimensional linear elasticity has been
studied in [ASS08]. In particular, for two point sources, dyadic far-field pattern
generators are defined, which are used for the formulation of a general scat-
tering theorem. The main reciprocity principle and mixed scattering relations
are also established there.

3.4 A Simple Inversion Algorithm for a Small Sphere

Concerning the three-dimensional case and following the same procedure as
in [ASS07], [ASS] for the two-dimensional analogous one, we present the neces-
sary basic formulae connected with the inversion algorithm for the reconstruc-
tion of an elastic rigid sphere. We recall that the three-dimensional incident
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elastic wave due to a point source at a is

ũinc
a (r) =

iks
ω2 (gradr grad�

r + k2
s Ĩ)h(ksε)−

ikp
ω2 gradr grad�

r h(kpε), (3.25)

where ε := |r− a|, r �= a.
Let us now consider the case of a spherical scatterer of radius R. If we

take spherical polar coordinates (r, θ, φ) and expand the point-source inci-
dent field (3.25) in terms of spherical Navier eigenvectors (Hansen vectors)
Le,imn,M

e,i
mn, and Ne,i

mn [BS81], we have

ũinc
a (r) =

iks
μ

∞∑
n=1,1,0

n∑
m=0

∑
σ=e,o

1
Gmn

[
1

n(n+ 1)
M

−
σmn(ksa)⊗M+

σmn(ksr)

+
1

n(n+ 1)
N

−
σmn(ksa)⊗N+

σmn(ksr) +
(
kp
ks

)3

L
−
σmn(kpa)⊗L+

σmn(kpr)],

where r := |r| < |a|, +(−) denotes the interior (exterior) Hansen vector, the
overbar stands for a complex conjugate, and

Gmn =
4π

2n+ 1
(n+m)!
(n−m)!

.

The scattered field has a similar expression and takes the form

ũsct
a (r) =

iks
μ

∞∑
n=1,1,0

n∑
m=0

1
Gmn

[αm,sn

hn(ksr)√
n(n+ 1)

(M
−
emn(ksa)⊗Cemn(θ, φ)

+M
−
omn(ksa)⊗Comn(θ, φ)) + βm,sn

hn(ksr)
ksr

(N
−
emn(ksa)⊗Pemn(θ, φ)

+ N
−
omn(ksa)⊗Pomn(θ, φ))

+ γm,sn

hn(ksr)/ksr + h′
n(ksr)√

n(n+ 1)
(N

−
emn(ksa)⊗Bemn(θ, φ)

+ N
−
omn(ksa)⊗Bomn(θ, φ))

+ δm,sn h′
n(kpr)

(
kp
ks

)3

(L
−
emn(kpa)⊗Bemn(θ, φ)

+ L
−
omn(kpa)⊗Bomn(θ, φ))

+ εm,sn

√
n(n+ 1)

hn(kpr)
kpr

(
kp
ks

)3(L
−
emn(kpa)⊗Bemn(θ, φ)

+ L
−
omn(kpa)⊗Bomn(θ, φ) )],

where the coefficients αm,sn , βm,sn , γm,sn , δm,sn , and εm,sn are to be determined.
The Dirichlet boundary condition (3.17) on r = R (surface of the elastic
sphere), and some orthogonality relations, yield
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αm,sn = − jn(ksR)
hn(ksR)

, βm,sn = − jn(ksR)
hn(ksR)

,

γm,sn = − jn(ksR) + ksRj′n(ksR)
hn(ksR) + ksRh′

n(ksR)
,

δm,sn = − jn(kpR)
hn(kpR)

, εm,sn = − jn(kpR)
hn(kpR)

,

where jn(kβR), β = p, s, are the spherical Bessel functions of first kind and
order n.

Finally, a simple inverse near-field method for a small rigid (i.e., Dirich-
let boundary condition) sphere can now easily be established. In particular,
we can solve the inverse problem using near-field experiments, and following
similar steps as for the two-dimensional case [ASS], we can locate the center
and the radius of a small rigid sphere. Let us mention here that by the term
“small sphere” we mean that we work in the “low-frequency regime,” i.e., that
kβR� 1, β = p, s.
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4.1 Introduction

Partial differential equations (PDEs) with variable coefficients often arise
in mathematical modeling of inhomogeneous media (e.g., functionally graded
materials or materials with damage-induced inhomogeneity) in solid mechan-
ics, electromagnetics, heat conduction, fluid flows through porous media, and
other areas of physics and engineering.

Generally, explicit fundamental solutions are not available if the PDE coef-
ficients are not constant, preventing formulation of explicit boundary integral
equations, which can then be effectively solved numerically. Nevertheless, for
a rather wide class of variable-coefficient PDEs, it is possible to use instead
an explicit parametrix (Levi function) taken as a fundamental solution of
corresponding frozen-coefficient PDEs, and reduce boundary value problems
(BVPs) for such PDEs to explicit systems of boundary–domain integral equa-
tions (BDIEs); see, e.g., [Mi02, CMN09, Mi06] and references therein. However
this (one-operator) approach does not work when the fundamental solution
of the frozen-coefficient PDE is not available explicitly (as, e.g., in the Lamé
system of anisotropic elasticity).

To overcome this difficulty, one can apply the two-operator approach, for-
mulated in [Mi05] for some nonlinear problems, that employs a parametrix of
another (second) PDE, not related with the PDE in question, for reducing the
BVP to a BDIE system. Since the second PDE is rather arbitrary, one can
always choose it in such a way that its parametrix is available explicitly. The
simplest choice for the second PDE is the one with a fundamental solution
explicitly available.

To analyze the two-operator approach, we apply in this paper one of its lin-
ear versions to the mixed (Dirichlet–Neumann) BVP for a linear second-order
scalar elliptic variable-coefficient PDE, reducing it to four different BDIE sys-
tems. Although the considered BVP can also be reduced to (other) BDIE
systems by the one-operator approach, it can be considered as a simple “toy”
model showing the main features of the two-operator approach arising also

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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in reducing more general BVPs to BDIEs. The two-operator BDIE systems
are nonstandard systems of equations containing integral operators defined
on the domain under consideration and potential type and pseudo-differential
operators defined on open submanifolds of the boundary. Using the results
of [CMN09], we give a rigorous analysis of the two-operator BDIEs and show
that the BDIE systems are equivalent to the mixed BVP and thus are uniquely
solvable, while the corresponding boundary–domain integral operators are in-
vertible in appropriate Sobolev–Slobodetski (Bessel-potential) spaces.

4.2 Function Spaces and BVP

Let Ω = Ω+ be an open three-dimensional region of R3, Ω−:=R3\Ω+ and
the boundary ∂Ω be a simply connected, closed, infinitely smooth surface.
Moreover, ∂Ω = ∂DΩ

⋃
∂NΩ, where ∂DΩ and ∂NΩ are open, nonempty, non-

intersecting, simply connected submanifolds of ∂Ω with an infinitely smooth
boundary curve ∂DΩ

⋂
∂NΩ ∈ C∞. Let a ∈ C∞(R3), a(x) > 0 and also

∂j := ∂/∂xj (j = 1, 2, 3), ∂x = (∂1, ∂2, ∂3). We consider the following PDE
with scalar variable coefficient:

Lau(x) := La(x, ∂x)u(x) :=
3∑
i=1

∂

∂xi

[
a(x)

∂u(x)
∂xi

]
= f(x), x ∈ Ω±, (4.1)

where u is an unknown function and f is a given function in Ω±.
In what follows, Hs(Ω+) = Hs

2(Ω+), Hs
loc(Ω

−) = Hs
2, loc(Ω

−), Hs(∂Ω) =
Hs

2(∂Ω) denote the Bessel potential spaces (coinciding with the Sobolev–
Slobodetski spaces if s ≥ 0). For S1 ⊂ ∂Ω, we will use the subspace
H̃s(S1) = {g : g ∈ Hs(∂Ω), supp(g) ⊂ S1} of Hs(∂Ω), while Hs(S1) =
{r

S1
g : g ∈ Hs(∂Ω)}, where r

S1
denotes the restriction operator on S1.

From the trace theorem (see, e.g., [LiMa72]) for u ∈ H1(Ω±), it follows
that u|±∂Ω := γ±u ∈ H 1

2 (∂Ω), where γ± is the trace operator on ∂Ω from Ω±.
We will use γ for γ± if γ+ = γ−. We will also use the notation u± for the
traces u|±∂Ω , when this will cause no confusion.

For a linear operator L∗ we introduce the following subspace of Hs(Ω±)
[Gr85, Co88]:

Hs,0(Ω±;L∗) := {g ∈ Hs(Ω±) : L∗g ∈ L2(Ω±)},

‖g‖2Hs,0(Ω±;L∗) := ‖g‖2Hs + ‖L∗g‖2H0(Ω±) = ‖g‖2Hs + ‖L∗g‖2L2(Ω±).

In this chapter, we will particularly use the space H1,0(Ω±;L∗) where L∗ is
either the operator La from (4.1) or the Laplace operator Δ, and one can see
that these spaces coincide.

For u ∈ H1,0(Ω±;Δ), we can correctly define the (canonical) co-normal
derivative T±

a u ∈ H− 1
2 (∂Ω), cf. [Co88, McL00, Mi07], as
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〈T±
a u,w〉∂Ω

:= ±
∫
Ω±

[
γ±

−1w·Lau+Ea(u, γ±
−1w)

]
dx ∀ w ∈ H1/2(∂Ω), (4.2)

where γ±
−1 : H1/2(∂Ω) → H1(Ω±) is a right inverse to the trace operator γ±,

Ea(u, v) :=
3∑
i=1

a(x)
∂u(x)
∂xi

∂v(x)
∂xi

= a(x)∇u(x) · ∇v(x)

and 〈·, ·〉
∂Ω

denotes the duality brackets between the spaces H− 1
2 (∂Ω) and

H
1
2 (∂Ω), which extend the usual L2(∂Ω) inner product; to simplify the no-

tation we will also sometimes write the duality brackets as integral. Then
for u ∈ H1,0(Ω±;Δ), v ∈ H1(Ω), the first Green identity holds [Co88,
Lemma 3.4], [Mi07, Lemma 4.8],∫

Ω±
v(x)Lau(x)dx = ±

∫
∂Ω

v(x)T+
a u(x)dS(x)−

∫
Ω±
Ea(u, v)dx . (4.3)

If u ∈ H2(Ω±), the canonical co-normal derivative T±
a u defined by (4.2)

reduces to its classical form

T±
a u :=

3∑
i=1

a(x)ni(x)
[
∂u(x)
∂xi

]±
= a(x)

[
∂u(x)
∂n(x)

]±
, (4.4)

where n(x) is the exterior (to Ω±) unit normal at the point x ∈ ∂Ω.
We will derive and investigate the two-operator boundary–domain integral

equation systems for the following mixed boundary value problem:

Lau = f in Ω (4.5)
u+ = ϕ0 on ∂DΩ (4.6)
T+
a u = ψ0 on ∂NΩ, (4.7)

where ϕ0 ∈ H
1
2 (∂DΩ), ψ0 ∈ H− 1

2 (∂NΩ), and f ∈ L2(Ω). Equation (4.5) is
understood in the distributional sense, condition (4.6) in the trace sense, and
equality (4.7) in the functional sense (4.2).

Let us consider another auxiliary linear elliptic partial differential operator
Lb such that

Lbu(x) := Lb(x, ∂x)u(x) :=
3∑
i=1

∂

∂xi

[
b(x)

∂u(x)
∂xi

]
, (4.8)

where b ∈ C∞(R3), b(x) > 0. Then for u ∈ H1,0(Ω±;Δ) = H1,0(Ω±;Δ)
the associate co-normal derivative operator T±

b is defined by (4.2) (and for
u ∈ H2(Ω±) by (4.4)) with a replaced by b. If v ∈ H1,0(Ω±;Δ), u ∈ H1(Ω),
then for the operator Lb the first Green identity holds:
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Ω±
u(x)Lbv(x)dx = ±

∫
∂Ω

u(x)T±
b v(x)dS −

∫
Ω±
Eb(u, v)dx. (4.9)

If u, v ∈ H1,0(Ω±;Δ), then subtracting (4.3) from (4.9), we obtain the two-
operator second Green identity, cf. [Mi05],∫

Ω±
{u(x)Lbv(x)− v(x)Lau(x)} dx =

±
∫
∂Ω

{
u(x)T+

b v(x)− v(x)T+
a u(x)

}
dS

+
∫
Ω±

[a(x)− b(x)]∇v(x) · ∇u(x)dx (4.10)

Note that if a = b, then the last domain integral disappears, and the two-
operator Green identity degenerates into the classical second Green identity.

4.3 Parametrix and Potential-Type Operators

As follows from [Mir70, Mi02, CMN09], the function

Pb(x, y) =
−1

4πb(y)|x− y| , x, y ∈ R3 (4.11)

is a parametrix (Levi function) for the operator Lb(x; ∂x) from (4.8), i.e., it
satisfies the equation

Lb(x, ∂x)Pb(x, y) = δ(x− y) +Rb(x, y)

with

Rb(x, y) =
3∑
i=1

xi − yi
4πb(y)|x− y|3

∂b(x)
∂xi

, x, y ∈ R3. (4.12)

Evidently, the parametrix Pb(x, y) is a fundamental solution to the operator
Lb(y, ∂x) := b(y)Δ(∂x) with “frozen” coefficient b(x) = b(y), i.e.,

Lb(y, ∂x)Pb(x, y) = δ(x− y).

The parametrix-based Newtonian and the remainder volume potential op-
erators, corresponding to the parametrix (4.11) and to remainder (4.12), are
given, respectively, by

Pbg(y) :=
∫
Ω

Pb(x, y)g(x)dx, Rbg(y) :=
∫
Ω

Rb(x, y)g(x)dx. (4.13)

Let us introduce the single-layer and the double-layer surface potential
operators, based on parametrix (4.11),
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Vbg(y) := −
∫
∂Ω

Pb(x, y)g(x)dSx, y /∈ ∂Ω, (4.14)

Wbg(y) := −
∫
∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx, y /∈ ∂Ω. (4.15)

For y ∈ ∂Ω, the corresponding boundary integral (pseudo-differential) oper-
ators of direct surface values of the single-layer potential Vb and the double-
layer potential Wb are

Vbg(y) := −
∫
∂Ω

Pb(x, y)g(x)dSx, (4.16)

Wbg(y) := −
∫
∂Ω

[Tb(x, n(x), ∂x)Pb(x, y)]g(x)dSx. (4.17)

We can also calculate at y ∈ ∂Ω the co-normal derivatives, associated with
the operator La, of the single-layer potential and of the double-layer potential,

T±
a Vbg(y) =

a(y)
b(y)

T±
b Vbg(y), (4.18)

L±
abg(y) := T±

a Wbg(y) =
a(y)
b(y)

T±
b Wbg(y) =:

a(y)
b(y)

L±
b g(y). (4.19)

The direct value operators associated with (4.18) are

W ′
abg(y) := −

∫
∂Ω

[Ta(y, n(y), ∂y)Pb(x, y)]g(x)dSx =
a(y)
b(y)

W ′
bg(y), (4.20)

W ′
bg(y) := −

∫
∂Ω

[Tb(y, n(y), ∂y)Pb(x, y)]g(x)dSx. (4.21)

From equations (4.13)–(4.21) we deduce representations of the parametrix-
based surface potential boundary operators in terms of their counterparts for
b = 1, that is, associated with the fundamental solution PΔ = −(4π|x− y|)−1

of the Laplace operator Δ.

Pbg =
1
b
PΔg, Rbg = −1

b

3∑
j=1

∂jPΔ [g(∂jb)] , (4.22)

a

b
Vag = Vbg =

1
b
VΔg;

a

b
Wa

(
bg

a

)
= Wbg =

1
b
WΔ (bg) , (4.23)

a

b
Vag = Vbg =

1
b
VΔg;

a

b
Wa

(
bg

a

)
= Wbg =

1
b
WΔ (bg) , (4.24)

W ′
abg =

a

b
W ′

bg =
a

b

{
W ′

Δ (bg) +
[
b
∂

∂n

(1
b

)]
VΔg
}
, (4.25)

L±
abg :=

a

b
L±
b g =

a

b

{
LΔ(bg) +

[
b
∂

∂n

(1
b

)]
W±
Δ (bg)

}
. (4.26)
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It is taken into account that b and its derivatives are continuous in R3 and
LΔ(bg) := L+

Δ(bg) = L−
Δ(bg) by the Liapunov–Tauber theorem.

The mapping properties of the volume and surface potentials are proved
in [CMN09], see also Appendices A and B in [Mi06]. Similar to Theorems 3.3
and 3.6 in [CMN09] (see also Appendices A and B in [Mi06]), relations (4.23)–
(4.26) imply the two following jump relation theorems.

Theorem 1. Let g1 ∈ H− 1
2 (∂Ω), and g2 ∈ H

1
2 (∂Ω). Then the following

relations hold on ∂Ω:

[Vbg1]± = Vbg1,

[Wbg2]± = ∓1
2
g2 +Wbg2,

T±
a Vbg1 = ±1

2
a

b
g1 +W ′

abg1.

Theorem 2. Let S1 and ∂Ω\S1 be nonempty, open, simply connected sub-
manifolds of ∂Ω with an infinitely smooth boundary curve, and 0 < s < 1.
Then

L+
ab +

a

b

∂b

∂n

(
−1

2
I +Wb

)
= L−

ab +
a

b

∂b

∂n

(
1
2
I +Wb

)
on ∂Ω.

Moreover, the pseudo-differential operator r
S1
L̂ab : H̃s(S1) → Hs−1(S1),

where

L̂abg :=
[
b

a
L±
ab +

∂b

∂n

(
∓1

2
I +Wb

)]
g = LΔ(bg) on ∂Ω,

is invertible, while the operators r
S1

(
b

a
L±
ab − L̂ab

)
: H̃s(S1) → Hs(S1) are

bounded and the operators r
S1

(
b

a
L±
ab − L̂ab

)
: H̃s(S1) → Hs−1(S1) are com-

pact.

For v(x) := Pb(x, y) and u ∈ H1,0(Ω;Δ), we obtain from (4.10) by stan-
dard limiting procedures (cf. [Mir70]) the two-operator third Green identity,

u+ Zbu+Rbu− VbT+
a u+Wbu

+ = PbLau in Ω, (4.27)

where

Zbu(y) := −
∫
Ω

[a(x)− b(x)]∇xPb(x, y) · ∇u(x)dx

=
1
b(y)

3∑
j=1

∂jPΔ [(a− b)∂ju] (y), y ∈ Ω. (4.28)
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Using the Gauss divergence theorem, we can rewrite Zbu(y) in the form that
does not involve derivatives of u,

Zbu(y) =
[
a(y)
b(y)

− 1
]
u(y) + Ẑbu(y), (4.29)

Ẑbu(y) :=
a(y)
b(y)

Wau
+(y)−Wbu

+(y) +
a(y)
b(y)

Rau(y)−Rbu(y),(4.30)

which allows us to call Zb an integral operator in spite of its integro-differential
ansatz (4.28).

Note that substituting (4.29)–(4.30) to (4.27) and multiplying by b(y)/a(y)
one reduces (4.27) to the one-operator parametrix-based third Green identity
obtained in [CMN09],

u+Rau− VaT+
a u+Wau

+ = PaLau in Ω.

Relations (4.28)–(4.30) and the mapping properties of PΔ, Ra, Rb, Wa,
and Wb, given by Theorems 3.1, 3.8 in [CMN09], imply the following state-
ment.

Theorem 3. The operators

Zb : Hs(Ω) → Hs(Ω), s >
1
2
,

Ẑb : Hs(Ω) → Hs,0(Ω;Δ), s ≥ 1,

are continuous.

If u ∈ H1,0(Ω;Δ) is a solution of equation (4.5) with f ∈ L2(Ω),
then (4.27) gives

Gu := u+ Zbu+Rbu− VbT+
a u+Wbu

+ = Pbf in Ω, (4.31)

Gu :=
1
2
u+ + Z+

b u+R+
b u− VbT+

a u+Wbu
+ = [Pbf ]+ on ∂Ω, (4.32)

T u :=
(
1− a

2b

)
T+
a u+ T+

a Zbu+ T+
a Rbu−W ′

abT
+
a u

+L+
abu

+ = T+
a Pbf on ∂Ω, (4.33)

where Z+
b u = [Zbu]+ and R+

b u = [Rbu]+.
Note that if Pb is not only the parametrix but also a fundamental solution

of the operator Lb, then the remainder operator Rb vanishes in (4.31)–(4.33)
(and everywhere in the paper), while the operator Zb stays unless La = Lb.

For some functions f, Ψ, Φ, let us consider a more general “indirect” inte-
gral relation, associated with (4.31),

u+ Zbu+Rbu− VbΨ +WbΦ = Pbf, in Ω. (4.34)

Similar to the proof of Lemma 4.1 in [CMN09], one can prove the following.
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Lemma 1. Let f ∈ L2(Ω), Ψ ∈ H− 1
2 (∂Ω), Φ ∈ H 1

2 (∂Ω), and u ∈ H1(Ω)
satisfy (4.34). Then u ∈ H1,0(Ω;Δ), Lau = f in Ω, and

Vb
(
Ψ − T+

a u
)
−Wb

(
Φ− u+) = 0 in Ω.

4.4 Two-Operator Boundary–Domain Integral Equations

Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some extensions of the given data
ϕ0 ∈ H

1
2 (∂DΩ) from ∂DΩ to ∂Ω and ψ0 ∈ H− 1

2 (∂NΩ) from ∂NΩ to ∂Ω,
respectively. Let us also denote

F0 := Pbf + VbΨ0 −WbΦ0 in Ω.

Note that for f ∈ L2(Ω), Ψ0 ∈ H− 1
2 (∂Ω), and Φ0 ∈ H

1
2 (∂Ω), we have the

inclusion F0 ∈ H1,0(Ω,La) due to the mapping properties of the Newtonian
(volume) and layer potentials (cf. Theorems 3.1 and 3.10 in [CMN09]).

To reduce BVP (4.5)–(4.7) to one or another two-operator BDIE system,
we will use equation (4.31) in Ω, and restrictions of equation (4.32) or (4.33)
on appropriate parts of the boundary. We will always substitute Φ0 +ϕ for u+

and Ψ0 + ψ for T+
a u, cf. [CMN09], where Φ0 ∈ H

1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω)
are considered as known, while ψ belongs to H̃− 1

2 (∂DΩ) and ϕ to H̃
1
2 (∂NΩ)

due to the boundary conditions (4.6)–(4.7) and are to be found along with
u ∈ H1,0(Ω;Δ). This will lead us to segregated BDIE systems.

4.4.1 The Integral Equation System (GT )

Let us use equation (4.31) in Ω, the restriction of equation (4.32) on ∂DΩ,
and the restriction of equation (4.33) on ∂NΩ. Then we arrive at the following
two-operator segregated system of BDIEs:

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.35)
Z+
b u+R+

b u− Vbψ +Wbϕ = F+
0 − ϕ0 on ∂DΩ, (4.36)

T+
a Zbu+ T+

a Rbu−W ′
abψ + L+

abϕ = T+
a F0 − ψ0 on ∂NΩ .(4.37)

Note that due to Lemma 1, all terms of equation (4.35) belong to H1,0(Ω;Δ)
and their co-normal derivatives are well defined. System (4.35)–(4.37) can be
rewritten in the form

AGT U = FGT ,

where
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U� := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ),

FGT := [F0, r∂DΩ
F+

0 − ϕ0, r∂N Ω
T+
a F0 − ψ0]�,

AGT :=

⎡⎢⎢⎢⎣
I + Zb +Rb −Vb Wb

r
∂DΩ

[Z+
b +R+

b ] −r
∂DΩ

Vb r
∂DΩ

Wb

r
∂N Ω

T+
a [Zb +Rb] −r

∂N Ω
W ′
ab r

∂N Ω
L+
ab

⎤⎥⎥⎥⎦ .

4.4.2 The Integral Equation System (GG)

To obtain another system, we will use equation (4.31) in Ω and equa-
tion (4.32), associated with the operator G on the whole boundary ∂Ω, and
arrive at the two-operator segregated BDIE system (GG),

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.38)
1
2
ϕ+ Z+

b u+R+
b u− Vbψ +Wbϕ = F+

0 − Φ0 on ∂Ω . (4.39)

System (4.38)–(4.39) can be written in the form

AGGU = FGG ,

where

FGG := [F0, F
+
0 − Φ0]�,

U� := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ),

AGG :=
[
I + Zb +Rb −Vb Wb

Z+
b +R+

b −Vb 1
2I +Wb

]
.

4.4.3 The Integral Equation System (T T )

To obtain one more system, we will use equation (4.31) in Ω and equa-
tion (4.33) on ∂Ω and arrive at the two-operator segregated BDIE system
(T T ),

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.40)(
1− a

2b

)
ψ + T+

a Zbu+ T+
a Rbu−W ′

abψ + L+
abϕ =

T+
a F0 − Ψ0 on ∂Ω.(4.41)

System (4.40)–(4.41) can be written in the form

AT T U = FT T ,

where
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FT T := [F0, T
+
a F

+
0 − Ψ0]�,

U� := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ),

AT T :=

[
I + Zb +Rb −Vb Wb

T+
a [Zb +Rb] (1− a

2b
)I −W ′

ab L+
ab

]
.

4.4.4 The Integral Equation System (T G)

To reduce BVP (4.5)–(4.7) to a BDIE system of “almost” the second kind
(up to the spaces), we will use equation (4.31) in Ω, the restriction of equa-
tion (4.33) on ∂DΩ, and the restriction of equation (4.32) on ∂NΩ. Then we
arrive at the following two-operator segregated BDIE system (T G):

u+ Zbu+Rbu− Vbψ +Wbϕ = F0 in Ω, (4.42)(
1− a

2b

)
T+
a Zbu+ T+

a Rbu−W ′
abψ + L+

abϕ =

T+
a F0 − Ψ0 on ∂DΩ, (4.43)

1
2
ϕ+ Z+

b u+R+
b u− Vaψ +Waϕ = F+

0 − Φ0 on ∂NΩ.(4.44)

System (4.42)–(4.44) can be rewritten in the form

AT GU = FT G ,

where

FT G := [F0, r∂DΩ
(T+
a F0 − Ψ0), r∂N Ω

(F+
0 − Φ0)]�,

U� := [u, ψ, ϕ] ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ),

AT G :=

⎡⎢⎢⎣
I + Zb +Rb −Vb Wb

r
∂DΩ

T+
a [Zb +Rb] (1− a

2b
)I − r

∂DΩ
W ′
ab r

∂DΩ
L+
ab

r
∂N Ω

[Z+
b +R+

b ] −r
∂N Ω

Vb 1
2I + r

∂N Ω
Wb

⎤⎥⎥⎦ .
4.4.5 Equivalence and Invertibility

Using the arguments similar to the proofs of Theorems 5.2, 5.6, 5.9, and 5.12
in [CMN09], one can prove the following equivalence theorem.

Theorem 4. Let f ∈ L2(Ω) and let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be
some fixed extensions of ϕ0 ∈ H

1
2 (∂DΩ) and ψ0 ∈ H− 1

2 , respectively.

(i) If some u ∈ H1(Ω) solves the mixed BVP (4.5)–(4.7) in Ω, then the solu-
tion is unique and the triple (u, ψ, ϕ) ∈ H1(Ω)× H̃− 1

2 (∂DΩ)× H̃ 1
2 (∂NΩ),

where
ψ = T+

a u− Ψ0, ϕ = u+ − Φ0 on ∂Ω, (4.45)

solves BDIE systems (GT ), (GG), (T T ), and (T G).
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(ii)Vice versa, if a triple (u, ψ, ϕ) ∈ H1(Ω)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ) solves
BDIE system (GT ) or (GG) or (T T ) or (T G), then the solution is unique,
u solves BVP (4.5)–(4.7), and relations (4.45) hold.

Application of the representation Lemma 5.13 and Corollary 5.14 as well
as Corollary 5.16 about invertibility of the mixed BVP (4.5)–(4.7) operator,
from [CMN09], along with the equivalence Theorem 4 above, lead to the fol-
lowing invertibility result.

Theorem 5. The following operators are continuously invertible:

AGG : H1, 0(Ω;Δ)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ) → H1, 0(Ω;Δ)×H 1
2 (∂Ω),

AT T : H1, 0(Ω;Δ)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ) → H1, 0(Ω;Δ)×H− 1
2 (∂Ω),

AGT : H1, 0(Ω;Δ)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ)

→ H1, 0(Ω;Δ)×H 1
2 (∂DΩ)×H− 1

2 (∂NΩ),

AT G : H1, 0(Ω;Δ)× H̃− 1
2 (∂DΩ)× H̃ 1

2 (∂NΩ)

→ H1, 0(Ω;Δ)×H− 1
2 (∂DΩ)×H 1

2 (∂NΩ).
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149–160, Birkhäuser, Boston, MA (2007).

[Mir70] Miranda, C.: Partial Differential Equations of Elliptic Type, 2nd ed.,
Springer, Berlin-Heidelberg-New York (1970).



www.manaraa.com

5

Solution of a Class of Nonlinear Matrix
Differential Equations with Application to
General Relativity

M. Azreg-Aı̈nou

Başkent University, Ankara, Turkey; azreg@baskent.edu.tr

5.1 Introduction

Five-dimensional general relativity (5DGR) or Kaluza–Klein theory (KKT)
[Le84] is considered as a first step towards unification of electromagnetism
and gravitation. 5DGR action may be extended by appropriate quadratic
terms making up the Gauss–Bonnet term (GBT) to obtain more generalized
field equations including up to second-order derivatives of the metric [Lo71]. If
cylindrical symmetry is assumed, the 5-metric takes the form [AzCl96, Az08]

ds2 = −dρ2 + λab(ρ) dxa dxb , (5.1)

where a, b = 2, . . . , 5 and λab(ρ) is a 4×4 real symmetric matrix of signature
(– – + –). This 5-metric possesses four commuting Killing vectors ξaA ≡
δa
A (A = 1, . . . , 5) and is written in the associated coordinates: (x1 = ρ,

x2 = ϕ, x3 = z, x4 = t, x5) where x2 and x5 are periodic, x4 is timelike,
and ρ is a radial coordinate. Let “, ρ” denote the derivative “d/dρ,” the field
equations describing stationary cylindrically symmetric 5-spacetimes split into
a nonlinear 4×4 matrix differential equation (5.2) and a scalar one (5.3),

2χ,ρ + 4trχ,ρ + (trχ)χ+ trχ2 + (trχ)2 + γ
{
(χ3),ρ − (trχ)(χ2),ρ

+ [(trχ)2 − trχ2]χ,ρ − (trχ,ρ)[χ2 − (trχ)χ]− (1/2)(trχ2),ρχ
+ (1/2)[(trχ)χ3 − (trχ2)χ2 − (trχ)(trχ2)χ+ (trχ)3χ]

}
= 0 , (5.2)

6trB + (trχ)2 − trχ2 + γ
{
tr (Bχ2)− tr (B χ)trχ

+ (1/2)trB[(trχ)2 − trχ2]
}

= 0 , (5.3)

where χ(ρ) ≡ λ−1λ,ρ and B(ρ) ≡ χ,ρ + (1/2)χ2.
Some 4-stationary solutions to equations (5.2) and (5.3) have been con-

as neutral, charged, or superconducting cosmic strings [AzCl96]. Very re-
cently, the superconducting cosmic string has been reconsidered and general-
ized [Az08].

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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structed either analytically or by a perturbation approach and interpreted

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_5,
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The purpose of this contribution is to prove some properties of equa-
tions (5.2) and (5.3) and use them to investigate the set of all their 4-stationary
solutions. In Section 5.2, we reduce equations (5.2) and (5.3) and show that
any solution χ commutes with its derivatives χ,ρ. Exploiting the latter prop-
erty, we prove that any solution χ is a polynomial in a constant matrix
with scalar coefficients (5.18). In Section 5.3, we discuss singular solutions
(detχ ≡ 0) and in Section 5.4 we deal with regular solutions (detχ �= 0). We
will either construct rigorously exact solutions or show the nonexistence of
solutions.

5.2 Symmetries and Properties

Equation (5.2) is readily brought to the form

2Q,ρ + fQ+ 2G+ γG,ρχ− γGχ2 = 0 ,

where Q(ρ) is a 4×4 real matrix defined by

Q
def= 4f + (2− γG)χ− γfχ2 + γχ3 . (5.4)

The invariants of χ are the functions f(ρ) ≡ trχ, g(ρ) ≡ trχ2, h(ρ) ≡ trχ3,
k(ρ) ≡ detχ, and G(ρ) ≡ g−f2 and H(ρ) ≡ h−f3. Combining (5.3) and the
trace of (5.2) and using the Cayley–Hamilton equation

χ4 = fχ3 + (G/2)χ2 + [(H/3)− (fG/2)]χ− k (5.5)

to eliminate trχ4 leads to (5.7). Hence, any solution to the system (5.2 and 5.3)
is necessarily a solution to the following reduced system (5.6 and 5.7):

2Q,ρ + fQ+ 2G+ γG,ρχ− γGχ2 = 0 , (5.6)
24γk = G(8 + 2γG+ 3γf2 + 2γf,ρ) . (5.7)

The system (5.2 and 5.3) or its reduced form (5.6 and 5.7) remains in-
variant if one performs a linear coordinate transformation with constant co-
efficients mixing the four Killing vectors together and their associated cyclic
coordinates

xa = Sab x
b
N , (5.8)

where Sab is a constant real matrix. Here xa and xbN are the old and new
coordinates (a, b = 2, . . . , 5), respectively. Such a transformation is equivalent
to a similarity transformation on χ (χ = SχNS

−1). Solutions related by such
transformations actually belong to the same class of equivalence. However,
when some Killing vectors have closed orbits, say ξ2A and ξ5A in our case, it
is possible to generate new solutions which are not globally equivalent to old
ones, as was shown in Section 4 of Ref. [AzCl96] and in Ref. [Az08].
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Equations (5.6 and 5.7) have been derived under the sole ansatz (5.1),
which is the general form of a stationary cylindrically symmetric 5-metric.
Besides the property discussed in the previous paragraph, the system (5.6
and 5.7) possesses two further properties: if one performs the simultaneous
transformations χ → −χ and ρ → −ρ the system (5.6 and 5.7) remains
invariant, and the other property is that any solution χ to (5.6 and 5.7)
commutes with its derivative χ,ρ: [χ, χ,ρ] = 0.

In order to show that [χ, χ,ρ] = 0, ∀ρ, we proceed as follows. Multiply-
ing (5.6) from the left and from the right by χ, subtracting the two equations
and using the fact that [χ,Q] = 0, one obtains the equation [χ,Q,ρ] = 0 which
is split as (2− γG)[χ, χ,ρ]− γf [χ, (χ2),ρ] + γ[χ, (χ3),ρ] = 0. Using the identity
[χ, (χn),ρ] ≡ [χn, χ,ρ], (n a positive integer), the latter equation reads

(2− γG)[χ, χ,ρ]− γf [χ2, χ,ρ] + γ[χ3, χ,ρ] = [Q,χ,ρ] = 0 , (5.9)

where we have used [f, χ,ρ] ≡ 0 in the last commutator of (5.9). By virtue
of (5.9), the matrix χ,ρ commutes then with any power of Q and consequently
with any polynomial in Q. Hence, to complete the proof of [χ, χ,ρ] = 0, we
have to show that χ can be expressed as a polynomial in Q by inverting
the definition formula (5.4). Squaring and cubing both sides of (5.4) and
using (5.5) to eliminate any power of χ higher than 3, one obtains

Q2 def= P0 + P1χ+ P2χ
2 + P3χ

3 , (5.10)

Q3 def= P̂0 + P̂1χ+ P̂2χ
2 + P̂3χ

3 , (5.11)

where P0(ρ) → P3(ρ) and P̂0(ρ) → P̂3(ρ) are scalar polynomials of (f,G,H, k)
which we obtained using MATLAB; only two of which are shown below:

P0 = 16f2 + (3/2)γ2Gk − 4γk ; P3 = (1/3)γ2H + 8γf − (1/2)γ2Gf .

In the generic case χ, χ2, and χ3 are seen as independent variables. Hence,
the linear system of equations (5.4, 5.10, and 5.11) in the variables (χ, χ2, χ3)
can be solved for any one of them. Let Gm,n = mγG − n (m,n are positive
integers). If L(ρ) is the determinant of the system of equations (5.4, 5.10,
and 5.11),

L = −288γ6k3 − 288γ4G1,4k
2

+ 6G2
1,4{γ[12G1,2f

2 − 4γfH + 3GG3,16] + 48}γ2k

+ G3
1,4{4γ3H2 − 6fG3,4γ

2H − 9G1,2[γG(G1,8 − 2γf2) + 16]} ,

then χ is provided by



www.manaraa.com

44 M. Azreg-Aı̈nou

χ =
{
72γ(G2

1,4 − 4γ2k)Q3 + γ[72G2
1,4(2fG1,7 − γH)

+ 96 γ2(2γH − 3fG1,12)k]Q2 +
{
G2

1,4[9G
3
1,4 + 18γf2(256 + γGG3,68)

− 4γ2[18γf2G1,24G1,8 + 9G2
1,4G5,16 − 12γ2fG5,52H + 16γ3H2]

− 24γ2fG1,16H + 8γ3H2]k + 576γ4G1,3k
2}Q (5.12)

+ 4{fG2
1,4
[
12fγ2G5,28H − 16γ3H2 − 9G1,4[16 + γ(6f2 +G)G1,8]

]
+ γ2k[72f3γG2

1,8 − 96γ2f2G1,8H + 4f(8γ3H2 − 9G1,5G
3
1,4)

+ 3γG2
1,4G5,12H]+6γ4[3f(112+γGG3,44)−4γG1,2H]k2−72γ6fk3}

}
/L ,

and similar results for χ2 and χ3

χ2 = [γ2(48γGH − 72γGG1,4 − 192H − 288γfk)Q3 + · · · ]/L , (5.13)

χ3/24 = [96G1,1 + 3γ2G2G1,10 − 12γ2kG1,2 − 12γ3f2k

+ γ2fG1,4(2H − 3fG)]Q3 + · · · ]/L . (5.14)

Using MATLAB, we have checked that the square and cube of the right-
hand side of (5.12) coincide with the right-hand sides of (5.13) and of (5.14),
respectively.

Now, for the values of ρ such that L(ρ) �= 0, χ(ρ) is a polynomial in
Q(ρ) provided by (5.12), and since by (5.9) χ,ρ(ρ) commutes with Q(ρ), we
conclude that χ,ρ(ρ) commutes with χ(ρ). Since we are only interested in
smooth solutions χ(ρ), the commutator [χ, χ,ρ](ρ) is also seen as a smooth
continuous matrix function of ρ, so by continuity we extend the property
[χ, χ,ρ] = 0 to all values of ρ including the roots of L(ρ) = 0, if there are any.
These statements being made for a fixed value of γ are extended by continuity
to all values of γ. Hence, the commutator [χ, χ,ρ] vanishes identically for any
solution χ(ρ, γ) to the system (5.6 and 5.7):

[χ, χ,ρ](ρ, γ) ≡ 0 .

We can now expand the left-hand side of (5.6) in such a way that the
terms including χ,ρ are grouped and χ,ρ is factored, say, to the right of the
powers of χ. Assume that χ(ρ) is any given solution to (5.6) and let a(ρ),
b(ρ), e(ρ), d(ρ), m(ρ), n(ρ), s(ρ), and t(ρ) be eight scalar real functions.
We want to determine under which condition(s) the product of the matrix
m+nχ+sχ2+tχ3 by the left-hand side of (5.6) is identically a total derivative.
Mathematically speaking, given any solution χ to (5.6) we want to determine
the equations satisfied by the eight functions a(ρ) → t(ρ) and the conditions
of their resolutions such that

(m+ nχ+ sχ2 + tχ3)× [l.h.s of (5.6)] ≡ (a+ bχ+ eχ2 + dχ3),ρ . (5.15)

Now, both sides of (5.15) being identically equal for any solution χ to (5.6)
leads to eight equations; four are algebraic and the other four are differential
equations. The algebraic equations are the coefficients of χ3χ,ρ, χ2χ,ρ, χχ,ρ,
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and χ,ρ on both sides of (5.15) expressing e, d, n, and b in terms of (t, s, m).
Because of limited space, we only show the expressions of (n, b)

6γn = −(4+γG+2γf2)t−2γfs ; b = −2γfkt−6γks+(4−2γG)m, (5.16)

where k is provided by (5.7). Using these algebraic relations in the other
four differential equations, which are the coefficients of χ3, χ2, χ, and the
independent terms on both sides of (5.15), we obtain the linear differential
equations satisfied by (t, s, m, a), where only one of them is shown below:

− a,ρ + [γf3k/3 + 5γGfk/3 + 2γf,ρfk − 4fk/3 + γG,ρk]t

+ [γf2k/3 + 2γf,ρk + γGk]s+ [8f,ρ + 2G+ 4f2]m = 0 .

Since these four differential equations are linear in (t, s, m, a), we are guaran-
teed that solutions always exist. If any solution χ(ρ) is known, its invariants
(f, G, H, k) can be substituted in these differential equations and solutions,
at least in the form of power series or hypergeometric functions for the un-
knowns (t, s, m, a), can be derived. Using the algebraic equations [(5.16), ...],
one determines the remaining four unknowns (e, d, n, b).

Now, given any solution χ to (5.6 and 5.7), assume that the eight functions
a(ρ) → t(ρ) have been determined as described previously. Multiplying both
sides of (5.6) by the matrix m+nχ+ sχ2 + tχ3 and using (5.15), one obtains

(a+ bχ+ eχ2 + dχ3),ρ = 0 ⇒ a+ bχ+ eχ2 + dχ3 = A , (5.17)

where A is a 4×4 constant real matrix. One then should be able to invert the
second equation in (5.17) and express χ as a polynomial in A by applying a
similar procedure as in the steps from (5.10) to (5.12) to obtain

χ(ρ) = η(ρ) + ω(ρ)A+ β(ρ)A2 + δ(ρ)A3 . (5.18)

Hence, any solution χ to (5.6) is necessarily a polynomial in a constant real
matrix A with scalar coefficient functions of ρ.

Solutions to the system (5.6 and 5.7) will be grouped according to their
determinant. In Section 5.4 we will somehow rely on our previous exact solu-
tions for the case γ = 0 (corresponding to pure KKT without GBT) [AzCl96],
which will not be discussed here. Our results for γ = 0 are summarized
in (5.19) and (5.20) where A is a 4×4 constant real matrix with arbitrary
trA3 and detA:

χ = A , with trA = trA2 = 0 (γ = 0) ; (5.19)

χ = (2/ρ)A , with trA = trA2 = 1 (γ = 0) . (5.20)

5.3 Singular Solutions: k ≡ 0

Solutions with vanishing determinant (5.7) satisfy either
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G = 0 or 8 + 2γG+ 3γf2 + 2γf,ρ = 0 . (5.21)

For G = 0 equation (5.6) reduces to 2Q,ρ + fQ = 0, whose solution is
given by

Q(ρ) = exp[−F (ρ)]M , with F (ρ) = (1/2)
∫ ρ

f(ρ′) dρ′ (5.22)

and M is a 4×4 constant real matrix. Using (5.4) in (5.22) one obtains

M − 4f exp[F ] = (2χ− γfχ2 + γχ3) exp[F ] . (5.23)

With k = 0, the determinant of the right-hand side of (5.23) is zero, and con-
sequently 4f exp[F ] must be a constant (identified with one of the eigenvalues
of M). Hence, {4f exp[F ]},ρ = 0 leads to f = 0 or f = 2/(ρ− ρ0). The trivial
case f = 0 leads to the following solution where A is a constant matrix:

χ = A , with trA = trA2 = detA = 0 .

For the case f = 2/ρ (we take ρ0 = 0), equation (5.23) reduces to

4A = 2ρχ− 2γχ2 + γρχ3 , (5.24)

where A = (M − 8)/4. Inverting equation (5.24) by applying the same steps
from (5.10) to (5.12), one obtains χ as a function of A:

χ(ρ) = (2/ρ)A− (4γ/ρ3)(A3 −A2) ,

with trA = trA2 = trA3 = 1 and detA = 0 . (5.25)

In the following we will discuss the classification of the solutions (5.25).
One derives the 5-metric (5.1) upon integrating χ = λ−1λ,ρ:

λ = C{1−A3 + ρ2A3 − 2 ln ρ(A3 −A)− 2[(ln ρ)2 − γ/ρ2](A3 −A2)} , (5.26)

where C is a constant real matrix of signature (– – + –). λ being symmetric,
C satisfies the relations C = CT and CA = (CA)T (T denotes transpose).
Equation (5.26) leads to detλ = (detC)ρ2; hence, the 5-metric is singular
along the axis ρ = 0, and consequently ρ runs from 0 to ∞.

The solutions (5.25) and (5.26) are in their generic forms. The constraints
on A, which fix the invariants of A, do not fix its rank r(A). Hence, solutions
provided by (5.26) can be classified according to their rank. Notice that the
rank of a matrix is invariant under a similarity transformation [LaTi85], such
as that defined in (5.8). Consequently, the different solutions classified accord-
ing to their rank belong to different equivalence classes. The constraints on
A reduce its characteristic equation to A4 = A3. A has then the eigenvalues
1, 0, 0, and 0 without necessarily being diagonalizable. The simplest form to
which one can bring the matrix A is the Jordan normal form [LaTi85],
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A = (1, 0, 0, 0; 0, 0, ε3, 0; 0, 0, 0, ε4; 0, 0, 0, 0), (5.27)

where ε3, ε4 = 0 or 1. The rank of A depends on the number of Jordan blocks
associated with the eigenvalue 0 in (5.27). The special solutions χ = (2/ρ)A,
of rank 1 (A2 = A) or 2 (A3 = A2), are interpreted as neutral or charged
cosmic strings, respectively. The generic solution (5.25) of rank 3 (A3 �= A2)
is interpreted as a superconducting cosmic string [AzCl96, Az08].

Although the derived solutions (5.25) are in their generic form, they can
be generalized by performing a similarity transformation (5.8) which results in
new solutions. Since two of our Killing vectors, ξ2A and ξ5A, have closed orbits,
it is possible to generate new solutions which are not globally equivalent to
old ones if at least one of these two vectors is rescaled or mixed with the other
vectors as a result of the transformation (5.8): i.e., if S5

5 �= 1 and/or S4
5 �= 0.

From this perspective, three examples have been given, two in Ref. [AzCl96]
and one in Ref. [Az08], where we have generalized the superconducting cosmic
string.

A thorough treatment of the case (5.21): 8 + 2γG + 3γf2 + 2γf,ρ = 0 is
possible, leading to no solution to equations (5.6 and 5.7). Alternatively, one
refers to the section on regular solutions, which includes this case as a special
one.

5.4 Regular Solutions: k �= 0

For convenience we reparametrize the diagonal elements of χ [equation (5.18)]
by Ta(ρ) ≡ η(ρ)+paω(ρ)+p2aβ(ρ)+p3aδ(ρ), where the pa’s are the eigenvalues
of A (a = 2 · · · 5). If two or more pa’s are equal, the corresponding Ta’s are
equal too; in any case, the number of independent equations satisfied by Ta’s
[equations (5.6 and 5.7)] exceeds by one that of independent functions Ta(ρ).

The equations satisfied by Ta’s are the diagonal elements of (5.6) and (5.7),

[4 + 6γT 2
a − 2γG− 4γfTa]Ta,ρ + 8f,ρ − 2γT 2

a f,ρ − γTaG,ρ
+ 4f2 + 2fTa + 2G− γGT 2

a − γfGTa − γf2T 2
a + γfT 3

a = 0 ; (5.28)
24γk = G(8 + 2γG+ 3γf2 + 2γf,ρ) , (5.29)

where k(ρ) =
∏5
a=2 Ta(ρ), f(ρ) =

∑5
a=2 Ta(ρ), and G(ρ) =

−∑5
a, b=2
b	=a

Ta(ρ)Tb(ρ). In the generic case where all Ta’s are non-equal, a so-

lution to (5.28) represents a (hyper)curve (C) in the four-dimensional space
of coordinates Ta, where ρ is an affine parameter. Equations (5.28) are linear
in Ta,ρ’s and can be solved for the latter in terms of Ta’s then used in (5.29)
to eliminate f,ρ. The remaining algebraic equation (5.29) in Ta represents a
hypersurface (S) in the above-mentioned four-dimensional space. Hence, the
system (5.28 and 5.29) will admit a solution only if the curve (C) or a segment
of it lies on the hypersurface (S). The purpose of the following is to show that
this is not the case.
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We will make use of (5.18), where A is any constant matrix, and expand
the functions (η(ρ), . . . , δ(ρ)) by power series in 1/ρ: η =

∑
i=0 ηi/ρ

i, . . . ,
δ =
∑

i=0 δi/ρ
i, where (ηi, . . . , δi) are numerical constants. Substituting into

equation (5.18), one writes

χ =
∑
i=0

Mi/ρ
i = M0 +M1/ρ+M2/ρ

2 + · · · , (5.30)

where Mi = ηi + ωiA + βiA
2 + δiA

3 (i ≥ 0) are all commuting constant
matrices since they are polynomials of the same constant matrix A. Hence,
we will look for solutions of the form (5.30) where Mi [i ≥ 1 case (5.19)
and i ≥ 2 case (5.20)] are smooth functions of γ which vanish in the limit
γ → 0. Two cases are to be distinguished: M0 �= 0 and M0 = 0 corresponding
to (5.19) and (5.20), respectively.

Notice that solutions of the form χ = ρn(N0 +N1/ρ+N2/ρ
2 + · · · ) where

Ni are constant matrices and n ∈ N+, which diverge at spatial infinity (ρ →
∞), do not exist. This is because when the field equations (5.6 and 5.7) are
satisfied, the vanishing of the coefficients of the leading terms in the series
expansions of (5.6 and 5.7) leads to the vanishing of the leading term in the
above expansion, i.e., N0 = 0, and so on until all Ni are zero for i ≤ n− 1.

Since the matrices Mi commute, we introduce a simplified notation for the
traces of their products, which will serve later to implement Mathematica-
based symbolic evaluations. The blank between the symbols “tr ” and “M” is
removed, and the face of the symbol “M” is upright. For instance, tr (M1M

2
2 )

is written as trM1,2,2 and tr (M1M
3
5M4) as trM1,4,5,5,5 .

5.4.1 The Case M0 �= 0

In the limit γ → 0 the matrix χ, as given by (5.30), approaches a constant
matrix M0 which solves the equations of the pure KKT. Hence, M0 satisfies
the constraints [see (5.19)]: trM0 = trM0,0 = 0 with arbitrary trM0,0,0 ≡ P
and detM0. To determine the remaining matrices Mi, i ≥ 1, we proceed by
induction. Let us assume that all the matrices Mi for 1 ≤ i ≤ l − 1 are zero
and look for the matrix of order l:

χ = M0 +Ml/ρ
l +Ml+1/ρ

l+1 + · · · . (5.31)

Substituting (5.31) into (5.7), the independent term leads immediately to
detM0 = 0, and the matrix coefficient of 1/ρl in (5.6) is written as

trMl(2M0 + γM3
0 )− 2γtrM0,lM

2
0 = −4trM0,l . (5.32)

The determinant of (5.32) leads to trM0,l = 0 and since M0 �= 0 implies
2M0 + γM3

0 �= 0 (⇒ P �= 0), the remaining equation (5.32) leads to trMl = 0.
Now, with trM0,l = 0 the scalar coefficient of 1/ρl in (5.7) vanishes identically,
and the series expansion of (5.5) to the order l implies
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Ml = (trM0,0,l/P )M0 . (5.33)

Next, evaluating the determinant of the matrix coefficient of 1/ρl+1 in (5.6)
implies trM0,l+1 = 0, and the remaining coefficient reduces to

2
(
l
trM0,0,l

P
− trMl+1

)
︸ ︷︷ ︸

Π1

M0 + γ
(

6l
trM0,0,l

P
− trMl+1

)
︸ ︷︷ ︸

Π2

M3
0 = 0 . (5.34)

Tracing this last equation, we obtain Π2 = 0 (P �= 0) and the equation
reduces to 2Π1M0 = 0; with M0 �= 0 this implies Π1 = 0. The homogeneous
system of equations Π1 = 0 and Π2 = 0 admits the trivial and unique solution
trMl+1 = 0 and trM0,0,l = 0. Hence, Ml = 0 by (5.33). Notice that all the
equations and steps from (5.32) to (5.34) are valid for l ≥ 1. Repeating these
steps for l = 1 leads to M1 = 0, then for l = 2 leads to M2 = 0 and so on.

We have thus shown that χ = M0 �= 0 with trM0 = trM0,0 = detM0 = 0
and trM0,0,0 arbitrary is the unique solution of the form (5.30). Said otherwise,
solutions of the form (5.30) with detχ �= 0 and M0 �= 0 do not exist.

5.4.2 The Case M0 = 0

In the limit γ → 0 the matrix χ, as given by (5.30), approaches the matrix
M1/ρ which solves the equations of the pure KKT. Hence, M1 satisfies the
constraints [see (5.20)]: trM1 = 2 and trM1,1 = 4 with arbitrary trM1,1,1 and
detM1. The coefficients of 1/ρ3 in (5.7) and (5.6) lead, respectively, to trM1,2 =
2trM2 and M2 = (trM2/2)M1. In general, the coefficients of 1/ρl+1 in (5.7)
and (5.6) lead to scalar and matrix equations, respectively, depending linearly
on trMl and trM1,l. Furthermore, the matrix equation depends linearly onMl.
Such a system can always be solved for (trMl, trM1,l,Ml). Since the resolution
of the system involves tracing the matrix equation, consistency of the obtained
solution (trMl, trM1,l, Ml) has to be checked for each step. For instance, the
coefficients of 1/ρ4 in (5.7) and (5.6) lead to

3γdetM1 + 4trM3 − 2trM1,3 = 0 (5.35)

4γ(2M2
1 −M3

1 ) + (trM2
2 + 2trM3)M1 − 8M3

+ 4trM2
2 − 16trM3 + 4trM1,3 = 0 . (5.36)

Solving the system consisting of (5.35) and the trace of (5.36), we obtain

trM3 =
2
3
γdetM1 +

1
2
trM2

2 +
γ

9
(8− trM1,1,1) (5.37)

trM1,3 =
17
6
γdetM1 + trM2

2 +
2γ
9

(8− trM1,1,1) . (5.38)

Substituting these last two equations into (5.36), we obtain
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M3 =
γ

2
(2M2

1 −M3
1 ) +

1
4
[trM2

2 +
2γ
3

detM1 +
γ

9
(8− trM1,1,1)]M1

+
γ

12
detM1 −

γ

9
(8− trM1,1,1) . (5.39)

Tracing (5.39) reduces to (5.37) and tracing (5.39)×M1 reduces to (5.38).
So the solution (trM3, trM1,3, M3) is consistent. Similarly, we obtained a
consistent solution (trM4, trM1,4, M4); however, the solution (trM5, trM1,5,
M5) failed to be consistent. The inconsistency of (trM5, trM1,5, M5) leads to
two constraints on the free parameters (trM1,1,1, detM1, trM2):

45γdetM2
1 + [216trM2

2 − 13γ(−8 + trM1,1,1)][(−8 + trM1,1,1)

+ 6detM1[27trM2
2 + γ(−37 + 8trM1,1,1)] = 0 (5.40)

90γdetM2
1 + 8[54trM2

2 − γ(−8 + trM1,1,1)](−8 + trM1,1,1)

+ 3detM1[108trM2
2 + γ(−496 + 89trM1,1,1)] = 0 . (5.41)

Other constraints on (trM1,1,1, detM1, trM2) are derived from the inconsis-
tency of (trM6, trM1,6, M6), from that of (trM7, trM1,7, M7) or, preferably,
from the traces of the matrix coefficients of 1/ρ6 and 1/ρ7 in (5.5):

[18γdetM1 − 9trM2
2 + 5γ(−8 + trM1,1,1)](−8 + trM1,1,1) = 0 (5.42)

trM2[18γdetM1 − 6trM2
2 + 5γ(−8 + trM1,1,1)](−8 + trM1,1,1) = 0. (5.43)

Applying the command Reduce of Mathematica to solve the system of the
four constraints (5.40), (5.41), (5.42), and (5.43), with the extra conditions
detM1 �= 0 and (detM1, trM2, trM1,1,1) ∈ R to ensure that detχ �= 0 and that
the invariants of χ are real numbers, leads to the False result. This proves
that solutions of the form (5.30) with detχ �= 0 and M0 = 0 do not exist.

From the above discussions, we then conclude that the system (5.6 and 5.7)
does not admit any regular solution.

With different tools on hand, we have shown that the field equations (5.6)
and (5.7) admit either 1) singular solutions of the form χ(ρ) = (2/ρ)A −
(4γ/ρ3)(A3 − A2) constrained by trA = trA2 = trA3 = 1 and detA = 0.
The integral constant matrix A helps to classify the solutions according to
its rank. The outcome of this classification is that solutions with r(A) = 1,
r(A) = 2, and r(A) = 3 are neutral, charged, and superconducting cosmic
strings, respectively, or 2) singular solutions of the form χ = A constrained
by trA = trA2 = detA = 0. In Section 5.4 we have conducted proofs of
nonexistence of regular and further singular solutions to the overdetermined
system of nonlinear differential equations (5.6) and (5.7).

A program for Mathematica has been developed to deal with commuting
matrices in algebraic form instead of the usual matrix form. It consists in
evaluating traces of products of matrices and determinants of sums of matrices
in algebraic forms without however knowing the entries of the matrices.
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The Bottom of the Spectrum in a
Double-Contrast Periodic Model
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A periodic spectral problem in a bounded domain with double inhomo-
geneities in mass density and stiffness coefficients is considered. A previous
study [BKS08] has explored the problem by the method of asymptotic ex-
pansions with justification of errors showing that all eigenelements of the ho-
mogenized problem really approximate some of the perturbed eigenelements.
Within this chapter additional results, partly announced in [BKS08], are ob-
tained on the eigenfunction convergence at the bottom of the spectrum. It
is shown that the eigenfunctions, which correspond to the eigenvalues at the
bottom of the spectrum, could converge either to zero or to the eigenfunc-
tions of the homogenized problem. The result was obtained by the method of
two-scale convergence [Al92, Zh00].

Similar double high contrasts in mass and stiffness coefficients for a fi-
nite number of perturbed regions were considered in [BaGo07]–[BaGo09]
and [GLNP06]. One of the distinctive features of these models is the pres-
ence of two different types of eigenvibrations at low and high frequencies
when particular subdomains generate leading frequencies and eigenvibrations.
Comparing the results for the same relative magnitude of perturbations, it is

brations are generated by the heavier inclusion. This is not the case in the
periodic model under consideration, where even at low frequencies the ho-
mogenized problem in a relatively light matrix appears. Nevertheless, the
presence of small periodic heavy inclusions of order ε−1 shifts the bottom
of the spectrum itself, inducing an eigenvalue series of order ε, in particu-
lar cε ≤ λε1 ≤ εC (see Lemma 5). Considering highly nontrivial effects ap-
pearing in periodic problems with high contrasts [Al92, JKO94], we refer
to [BeGr05, Pa91, Ry02, Sa98, Sa99] for the specific features arising within
models including mass density perturbations.

We consider a model of eigenvibrations for a body occupying a bounded
domain Ω in Rn (n = 2, 3, . . . ) containing a periodic array of small inclusions;
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 53

observed that in the case of only two perturbed regions, low-frequency vi-
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Fig. 6.1. The geometry and the periodicity cell

see Figure 6.1. The size of the inclusions is controlled by a small positive
parameter ε, ε→ 0.

Let Q = [0, 1)n be a reference periodicity cell in Rn. Let Q̃0 be a periodic
set of “inclusions,” i.e., Q̃0 + m = Q̃0, ∀m ∈ Zn, and Q0 = Q̃0 ∩ Q is a
reference inclusion lying inside Q (Q0 ⊂ Q with the bar denoting a closure
of the set) with C2-smooth boundary Γ ; see Figure 6.1. Let Q1 = Q\Q0,

Q̃1 = Rn\Q̃0. Introducing y = x/ε we refer to y as a fast variable, as opposed
to the slow variable x. In the x-variable the periodicity cell is εQ = [0, ε)n.
If y ∈ Qj then x = εy ∈ εQj , j = 0, 1. We denote Ω̃ε0 := Ω ∩ εQ̃0, Ω̃ε1 :=
Ω∩εQ̃1; see Figure 6.1. Within this chapter two possible geometries are under
consideration:

A The inclusions are allowed to intersect or touch the boundary; then simply
Ωεk := Ω̃εk, k = 0, 1.

B The inclusions touching or intersecting the boundary are sent to the con-
nected phase: if the intersection between ∂Ω and the boundary of any
connected component of Ω̃ε0 is nonempty, then this particular component
is sent to be part of a new matrix Ωε1 ⊃ Ω̃ε1, and the remaining components
form a new Ωε0 ⊂ Ω̃ε0.

Let Γ ε be a boundary between Ωε0 and Ωε1. The trace on Γ ε of function
f : Ωεj → Rn is denoted by f

∣∣
j
. Let ny be the outer unit normal to Q0 on its

boundary Γ , and let nx denote the similar normal on Γ ε.
Let the stiffness aε and density ρε be parametrized by ε > 0 as follows:

aε (x) =
{

1, x ∈ Ωε1
ε, x ∈ Ωε0

and ρε (x) =
{

1, x ∈ Ωε1
ε−1, x ∈ Ωε0

.

We study the asymptotic behavior of the self-adjoint spectral problem∫
Ω

aε (x)∇uε∇φdx− λε
∫
Ω

ρε (x)uεφdx = 0 ∀φ ∈ H1
0 (Ω) (6.1)

as ε→ 0. If Γ and ∂Ω are smooth enough, then the variational problem (6.1)
can be equivalently represented in a classical formulation,
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−div (aε (x)∇uε) = λερε (x)uε, x ∈ Ω, uε|∂Ω = 0, (6.2)

uε
∣∣
1 = uε

∣∣
0, ∂nuε

∣∣
1 = ε∂nuε

∣∣
0, (6.3)

with symbol ∂n denoting a derivative in the normal direction n, ∂n = n · ∇.
We use the standard notation for Lebesgue and Sobolev spaces: L2

p(Ω) is a
p-weighted L2-space of square integrable functions in Ω. The notation (·, ·)H
is used for a scalar product in a Hilbert space H. Let Lε = L2

ρε
(Ω) and Hε

be an H1
0 (Ω) Sobolev space with scalar product

(u, v)Hε =
∫
Ω

aε(x)∇u · ∇v dx+
∫
Ω

ρε(x)uv dx.

The spectrum of (6.2), (6.3) consists of a countable set of eigenvalues of
finite multiplicity with the only accumulation point at infinity:

0 < λε1 < λ
ε
2 ≤ · · · ≤ λεj ≤ · · · → +∞.

The corresponding eigenfunctions uεj form an orthogonal basis in Lε:

0 = (uεj , u
ε
k)Lε =

∫
Ωε

1

uεju
ε
kdx+ ε−1

∫
Ωε

0

uεju
ε
kdx if j �= k.

Then (6.1) shows that the eigenfunctions uεj are orthogonal in Hε as well,

0 = (uεj , u
ε
k)Hε =

∫
Ωε

1

∇uεj · ∇uεkdx+ ε
∫
Ωε

0

∇uεj · ∇uεkdx if j �= k.

Note that we do not fix the norm of uεj yet. The reason is that different energy
norms are more appropriate for the analysis of the problem at various energy
levels, i.e., at various frequency scales.

We denote by L2
#(Q) the space of functions in L2(Q) extended by Q-

periodicity to the whole Rn. Let C∞
# (Q) be the space of infinitely differentiable

functions in Rn that are Q-periodic. Then H1
#(Q) is the closure of C∞

# (Q) in
the norm of H1(Q). Let Vpot be the space of potential vectors, i.e., vectors
from the closure of the set {∇φ| φ ∈ C∞

# (Q)} in L2
#(Q)n. Let Vsol be the

space of solenoidal vectors, i.e., vectors b from L2
#(Q)n such that div b = 0

in L2
#(Q). We also use the conventional notation φ(x, y) ∈ L2(Ω ×Q,H(Q))

if function φ is from L2(Ω ×Q) and, additionally, when it is considered as a
function of the y-variable, φ(x, ·) belongs to a certain space H(Q).

A previous study of the problem has discovered the presence of low fre-
quencies, which correspond to the eigenvalues of order ε (specific case λ0 = 0
within [BKS08, Th 4.6]). Moreover, for such eigenvalues the limit forms of vi-
brations also exist in a classical meaning, i.e., the limit forms in both phases
depend only on the slow variable x and do not depend on the fast variable
y = x/ε. Note that the latter statement does not hold true at high frequen-
cies; see [BKS08], where the vibrations in the inclusions depend on the fast
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variable. Therefore, the desired result in the scope of this chapter is, first, to
estimate the bottom of the spectrum for problem (6.1), which is addressed
in Lemma 5, yielding the estimate cε ≤ λε1 ≤ Cε, and, second, to investi-
gate the convergence of eigenfunction sequences uε corresponding to the low
eigenvalues λε subject to the conditions

λε = O(ε) as ε→ 0, ‖uε‖L2(Ω) = 1. (6.4)

The latter question is addressed throughout the chapter and the results are
gathered in Lemma 6.

Let the symbol H⇀ denote convergence in the weak topology of the Hilbert
space H and 2

⇀ state for the weak two-scale convergence. Let χΩ , χj , and
χεj denote the characteristic functions of the sets Ω, Qj , and Ωεj , respectively,
j = 0, 1. Note that χεj(x) = χΩ(x)χj(xε ).

Lemma 1. Under assumptions (6.4) the sequence uε is uniformly bounded in
Hε, i.e., there exists a constant C > 0 independent of ε and such that

‖∇uε‖L2(Ωε
1) ≤ C, ε1/2‖∇uε‖L2(Ωε

0) ≤ C.

There exists a function u(x) ∈ L2(Ω) such that up to a subsequence

uε
L2(Ω)
⇀ u(x) and uε

2
⇀ u(x).

Proof. Let ωε = ε−1λε. Then by virtue of (6.4), the sequence ωε is bounded.
Integral identity (6.1) with φ = uε yields∫

Ωε
1

|∇uε|2dx+ ε
∫
Ωε

0

|∇uε|2dx = ωε

(
ε

∫
Ωε

1

u2
εdx+

∫
Ωε

0

u2
εdx

)
.

Since uε is bounded in L2(Ω), there exists a function u(x) ∈ L2(Ω) such

that up to a subsequence uε
L2(Ω)
⇀ u(x). Additionally, from the properties

of two-scale convergence (see [Zh00, Prop. 2.2]), we have the existence of
a function u0(x, y) such that uε

2
⇀ u0(x, y). Moreover, by the mean value

property, u(x) = 〈u0(x, ·)〉 :=
∫
Q
u0(x, y)dy. We introduce a measure dμε =

χε1dx. Since the measure dμε is ergodic and ε‖∇uε‖L2(Ωε
1) → 0, by virtue

of [Zh00, Th. 4.1] we obtain that u0(x, y) is a function of the slow variable x
only. Then, naturally, u0(x, y) ≡ u(x).

Lemma 2. The function u, which is defined in Lemma 1, belongs to H1
0 (Ω).

There exists a function u1(x, y) ∈ L2(Ω,H1
#(Q)) such that up to a subsequence

χε1∇uε
2
⇀ χ1(y)(∇u(x) +∇yu1(x, y)).
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Proof. The proof mainly follows [Zh00, Proof of Th. 4.2]. Lemma 1 ensures
that χε1∇uε is a bounded sequence in L2(Ω). Therefore, up to a subsequence,
it possesses a weak two-scale limit, which we denote by p(x, y), i.e., χε1∇uε

2
⇀

p(x, y) with p(x, y) ∈ L2(Ω,L2
#(Q)). Moreover, since χ1(y) belongs to L∞

# (Q)

and, by Lemma 1, uε
2
⇀ u(x), by the properties of two-scale convergence we

obtain
χε1(x)uε(x) = χΩ(x)χ1(

x

ε
)uε(x)

2
⇀ χΩ(x)χ1(y)u(x). (6.5)

Let b(y) ∈ Vsol and φ(x) ∈ C∞(Ω). Since φ∇uε = ∇(uεφ) − uε∇φ and b
is orthogonal to all potential vectors,∫

Ω

φ(x)χε1(x)∇uε(x) · b(
x

ε
) dx = −

∫
Ω

χε1(x)uε(x)∇φ(x) · b(
x

ε
) dx.

Passing to the limit in the last identity and incorporating (6.5), we have∫
Ω

φ(x)
∫
Q

p(x, y) · b(y) dy dx = −
∫
Ω

u(x)∇φ(x) ·
∫
Q

χ1(y)b(y) dy dx. (6.6)

With an arbitrary φ ∈ C∞(Ω) and a constant vector

〈b〉1 =
∫
Q1

b(y) dy,

the latter leads to the distributional equality∫
Q

p(·, y) · b(y) dy = 〈b〉1 · ∇u in L2(Ω). (6.7)

Note that the range of all possible values of 〈b〉1 as b ∈ Vsol covers the entire
Rn. Therefore, the function∇u belongs to L2(Ω)n itself and, thus, u ∈ H1(Ω).

Then (6.6) for φ ∈ C∞
0 (Ω) yields∫

Ω

∫
Q

[p(x, y)−∇u(x)] · φ(x)b(y) dy dx = 0.

Since the linear span of the vector functions φ(x)b(y) is dense in L2(Ω, Vsol)
and the orthogonal decomposition L2(Ω × Q)n = L2(Ω, Vpot) ⊕ L2(Ω, Vsol)
holds true, we obtain p(x, ·) − ∇u(x) ∈ L2(Ω, Vpot). Therefore, there exists
a function u1(x, y) ∈ L2(Ω,H1

#(Q)) such that p(x, ·) − ∇u(x) = ∇yu1(x, ·).
Note that, by the construction, p(x, y) = χ1(y)p(x, y). Indeed, (χε1)

2 = χε1
and, therefore, χε1∇uε = (χε1)

2uε
2
⇀ χ1(y)p(x, y).

Let us finally show that u satisfies zero boundary conditions. Substituting
p(x, y) = ∇u(x) +∇yu1(x, y) into (6.6), we obtain∫

Ω

φ(x)∇u ·
∫
Q

b(y) dy dx = −
∫
Ω

u(x)∇φ(x) ·
∫
Q1

b(y) dy dx. (6.8)



www.manaraa.com

58 N.O. Babych

Let the function b have support in Q1. Then, by (6.8),∫
Ω

φ(x)∇u(x) dx = −
∫
Ω

u(x)∇φ(x) dx, ∀φ ∈ C∞(Ω).

Integrating by parts, we obtain
∫
∂Ω
u ∂νφdγ = 0, where ν is the unit normal

to ∂Ω. Since φ is an arbitrary smooth function, the trace of u to ∂Ω is zero.
Thus, u ∈ H1

0 (Ω).

Lemma 3. The function u1(x, y), which is introduced in Lemma 2, is a solu-
tion in L2(Ω ×Q,H1

#(Q)) to the problem

−Δyu1(x, y) = 0 in Ω ×Q1, n · ∇yu1(x, y)
∣∣
y∈Γ = −n · ∇xu. (6.9)

Proof. Let us consider the integral identity (6.1) on the test functions φε(x) =
εψ(x)b(xε ) such that ψ ∈ C∞

0 (Ω) and b(y) ∈ C∞
# (Q); then

ε

∫
Ωε

1

∇uε · ∇(ψ(x)b(
x

ε
)) dx+ ε2

∫
Ωε

0

∇uε · ∇(ψ(x)b(
x

ε
)) dx

= ε2ωε
∫
Ωε

1

uεψ(x)b(
x

ε
) dx+ εωε

∫
Ωε

0

uεψ(x)b(
x

ε
) dx. (6.10)

Normalization (6.4) shows that the right-hand side of (6.10) tends to zero as
ε→ 0. Since

∇(ψ(x)b(
x

ε
)) = ε−1ψ(x)∇yb(y) + b(y)∇xψ(x), y =

x

ε
, (6.11)

the second term on the left-hand side of (6.10) becomes

ε

∫
Ωε

0

ψ(x)∇uε · (∇yb)
∣∣
y= x

ε

dx+ ε2
∫
Ωε

0

b(
x

ε
)∇uε · ∇ψ(x) dx. (6.12)

Note that by Lemma 1, the sequence ε1/2χε0∇uε is L2-bounded. Therefore,
up to a subsequence, it is two-scale weakly convergent. Then we can pass to
the limit in both terms of (6.12), which become zero.

Finally, we can pass to the limit in the first term of identity (6.10). By
Lemma 2, we obtain

ε

∫
Ωε

1

∇uε · ∇(ψ(x)b(
x

ε
)) dx

=
∫
Ωε

1

ψ(x)∇uε · (∇yb)
∣∣
y= x

ε

dx+ ε
∫
Ωε

1

b(
x

ε
)∇uε · ∇ψ(x) dx

→
∫
Ω

ψ(x)
∫
Q

χ1(y)[∇u(x) +∇yu1(x, y)]∇yb(y) dy dx, ε→ 0.
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Since all the other terms in (6.10) vanish in the limit, we have∫
Ω

ψ(x)
∫
Q

χ1(y)[∇u(x) +∇yu1(x, y)]∇yb(y) dy dx = 0.

Since ψ ∈ C∞
0 (Ω) is an arbitrary function from a set that is dense in L2(Ω),∫

Q1

[∇u(x) +∇yu1(x, y)]∇yb(y) dy = 0, ∀b ∈ C∞
# (Q). (6.13)

Thus, the vector [∇u(x) +∇yu1(x, y)] is orthogonal to all potential vectors;
therefore, it is solenoidal or divergent-free, i.e., divy[∇u(x)+∇yu1(x, y)] = 0.
The latter obviously shows that Δyu1(x, y) = 0 in L2(Q). This together
with (6.13) reconstruct the boundary condition in (6.9) by means of distribu-
tions.

Corollary 1. Let Nj(y) be a unique solution in H1(Q) to the problem

ΔyNj(y) = 0 in Q1, n · ∇yNj = −nj on Γ,
∫
Q1

Nj(y) dy = 0, (6.14)

where nj is the jth component of the normal n. Then u1 from Lemma 3 can
be given by

u1(x, y) = Nk(y)∂xk
u(x), (6.15)

where we use the conventional summation over repeating indices.

Let Ahom = (Ahomjk )nj,k=1 be the classical homogenized matrix for periodic
perforated domains (see, e.g., [JKO94]),

Ahomjk = |Q1|δjk +
∫
Q1

∂yj
Nk dy. (6.16)

Lemma 4. Let ωε = ε−1λε tend to ω and uε
2
⇀ u(x) as ε → 0. Then either

u ≡ 0 or u ∈ H1
0 (Ω) is an eigenfunction corresponding to the eigenvalue ω of

the problem

−divAhom∇xu(x) = ω|Q0|u(x) in Ω, u = 0 on ∂Ω. (6.17)

The spectrum of (6.17) consists of a countable set of eigenvalues of finite
multiplicity

0 < ω1 < ω2 ≤ · · · ≤ ωj ≤ · · · → +∞.
The corresponding eigenfunctions vj form an orthonormal basis in L2(Ω),∫

Ω

ujuk dx = δjk.
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Proof of Lemma 4. Passing to the limit as ε → 0 in (6.1) for φ(x) ∈ C∞
0 (Ω),

let us first consider the potential energy form being represented by the first
term in (6.1). By Lemma 2,∫

Ωε
1

∇uε · ∇φdx =
∫
Ω

χε1∇uε · ∇φdx

→
∫
Ω

(
|Q1|∇xu(x) +

∫
Q1

∇yu1(x, y) dy
)
· ∇xφ(x) dx. (6.18)

Moreover, (6.15) shows that the right-hand side of (6.18) is equal to∫
Ω

(
|Q1|∇xu(x) + ∂xk

u(x)
∫
Q1

∇yNk(y) dy
)
· ∇xφ(x) dx. (6.19)

The rest of the potential energy form also possesses a limit since, by Lemma 1,
it is the product of a bounded sequence and an infinitely small one (ε→ 0),

ε

∫
Ωε

0

∇uε(x) · ∇φ(x) dx = ε1/2
∫
Ω

(ε1/2χε0∇uε(x)) · ∇φ(x) dx→ 0. (6.20)

Second, since normalization (6.4) holds, the kinetic energy form, which is
the second term in (6.1), also has a limit

λε
∫
Ω

ρε(x)uεφdx = εωε
∫
Ω

χε1uεφdx+ ωε
∫
Ω

χε0uεφdx

→ ω

∫
Ω

∫
Q

χ0(y)u(x)φ(x) dy dx = ω|Q0|
∫
Ω

u(x)φ(x) dx. (6.21)

Combining (6.19)–(6.21), we find that the limit function u, which belongs to
H1

0 (Ω) by Lemma 2, satisfies the variational problem∫
Ω

(
|Q1|∇xu(x) + ∂xk

u(x)
∫
Q1

∇yNk(y) dy
)
· ∇xφ(x) dx

− ω|Q0|
∫
Ω

u(x)φ(x) dx = 0 ∀φ ∈ C∞
0 (Ω), (6.22)

which is a weak formulation of (6.17).

Lemma 5. The first eigenvalue λε1 of (6.2)–(6.3) satisfies the estimate cε ≤
λε1 ≤ Cε with positive constants c and C independent of ε.

Proof. By the minimax principle, we have

λε1 = min
0	≡v∈H1

0 (Ω)

(v, v)Hε

(v, v)Lε

= min
0	≡v∈H1

0 (Ω)

∫
Ωε

1
|∇v|2dx+ ε

∫
Ωε

0
|∇v|2dx∫

Ωε
1
v2dx+ ε−1

∫
Ωε

0
v2dx

. (6.23)
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First, we show the estimate from below. Then, decreasing the numerator and
increasing the denominator for ε ∈ (0, 1), we obtain

λε1 ≥ min
0 	≡v∈H1

0 (Ω)

∫
Ωε

1
|∇v|2dx+ ε2

∫
Ωε

0
|∇v|2dx

ε−1
∫
Ω
v2dx

= εμε1, (6.24)

where με1 is the first eigenvalue of the corresponding double porosity model,
see [Zh00]. By [Zh00, Th. 8.1], there exists a limit με1 → μ, where μ > 0 is the
bottom of the spectrum of the homogenized operator. Therefore, for ε small
enough, με1 ≥ μ

2 and, finally, λε1 ≥ εμ2 .
In the case of the geometric configuration A (see page 54), we refer

to [BKS08, Th. 4.6] for the proof that there exist a constant C1 > 0 and
eigenvalues λε satisfying

|λε − εω1| ≤ C1ε
5/4 (6.25)

for sufficiently small ε. In the case of the geometric configuration B, the proof
of [BKS08, Th. 4.6] can be literally adapted from the above since the absence
of inclusions touching or intersecting the boundary does not change the main
arguments. Let λεk be one of the eigenvalues satisfying (6.25), k ∈ N. Then

λεk ≤ εω1 + C1ε
5/4 ≤ Cε.

By the counting convention, λε1 ≤ λεk ≤ Cε.

Note that [BKS08, Th. 4.6] provides a more general result than the one
stated in the proof of Lemma 5. In particular, for arbitrary ωj and sufficiently
small ε there exist Ck > 0 and λε satisfying

|ε−1λε − ωk| ≤ Ckε1/4. (6.26)

Then for ε → 0 we can choose a sequence ε−1λε satisfying (6.26) and thus
possessing the limit ε−1λε → ωk. Therefore, according to Lemma 1, a certain
corresponding eigenfunction subsequence has a weak two-scale limit u(x). By
Lemma 4, the limit u is either zero or an eigenfunction of the homogenized
problem (6.17). Thus, we have proved the following assertion.

Lemma 6. The eigenfunction sequences uε, corresponding to the eigenvalues
λε of (6.1) that satisfy (6.26) and such that ‖uε‖L2(Ω) = 1, possess weakly

convergent subsequences uε
L2(Ω)
⇀ uk(x) and uε

2
⇀ uk(x), where in both cases

the limit is a function of the slow variable only. The limit uk is either zero or
an eigenfunction of the homogenized problem (6.17), which corresponds to the
eigenvalue ωk.

The result can be improved by showing that u �≡ 0. This can be done by em-
ploying compensated compactness arguments (see, e.g., [Zh00, Lemma 8.2]).
Nevertheless, the known methods that do it require the elimination of the
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geometric configuration of type A when inclusions are touching or intersect-
ing the boundary. After applying compensated compactness arguments, we
additionally obtain a strong eigenfunction convergence. A detailed analysis of
this situation will be published elsewhere.

Note that there are also other high-frequency accumulation points of the
spectra for (6.2)–(6.3) as ε→ 0 (see [BKS08]). The analysis of the correspon-
dent eigenfunction convergence at high frequencies requires some additional
assumptions and is beyond the scope of this chapter.
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7.1 Introduction

This chapter is concerned with the Fredholm property of matrix Wiener–
Hopf–Hankel operators (cf. [BoCa08], [BoCa], and [LMT92]) of the form

WΦ ±HΦ : [L2
+(R)]N → [L2(R+)]N , (7.1)

for N × N matrix-valued functions Φ with entries in the class of piecewise
almost periodic elements (see [BoCa] or [BKS02]), and where WΦ and HΦ
denote matrix Wiener–Hopf and Hankel operators defined by

WΦ = r+F−1Φ · F : [L2
+(R)]N → [L2(R+)]N (7.2)

HΦ = r+F−1Φ · FJ : [L2
+(R)]N → [L2(R+)]N , (7.3)

respectively. We are denoting by L2(R) and L2(R+) the Banach spaces of
complex-valued Lebesgue measurable functions ϕ, for which |ϕ|2 is inte-
grable on R and R+

2
+(R) denotes

the subspace of L2(R) formed by all functions supported in the closure of
R+ = (0,+∞), the operator r+ performs the restriction from L2(R) into
L2(R+), F denotes the Fourier transformation, and J is the reflection opera-
tor given by the rule JΦ(x) = Φ̃(x) = Φ(−x), x ∈ R.

We are therefore considering Wiener–Hopf–Hankel type operators with
the same Fourier symbol in the Wiener–Hopf and the Hankel components.
For matrix symbols in the piecewise almost periodic algebra, we will obtain
conditions which characterize the Fredholm property of those operators. This
characterization will be based on certain factorizations of matrix functions
and on spectral properties of other functions which are built from the original
Fourier symbols of the integral operators. The present work generalizes some
of the results of [BoCa]. In the next sections we start by presenting several
notions and auxiliary results which will allow us to reach the main result in
the last section.
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7.2 Almost Periodic Functions

A function α of the form α(x) :=
∑n

j=1 cj exp(iλjx), x ∈ R, where λj ∈ R and
cj ∈ C, is called an almost periodic polynomial. If we construct the closure of
the set of all almost periodic polynomials by using the supremum norm, we
will then obtain the AP class of almost periodic functions.

Theorem 1 (Bohr). Suppose that ϕ ∈ AP and

inf
x∈R

|ϕ(x)| > 0 . (7.4)

Then the function argϕ(x) can be defined so that argϕ(x) = λx+ψ(x), where
λ ∈ R and ψ ∈ AP .

Definition 1 (Bohr mean motion). Let ϕ ∈ AP and let the condition (7.4)
be satisfied. The Bohr mean motion of the function ϕ is defined to be the real
number k(ϕ) := lim�→∞

1
2� argϕ(x)|�−�.

Let eλ(x) := eiλx, x ∈ R. The subclasses AP+ := algL∞(R){eλ : λ ≥ 0}
and AP− := algL∞(R){eλ : λ ≤ 0} of AP are also of interest. In fact, one of
the reasons why the last two algebras are very useful is due to the fact that
AP± = AP ∩H∞

± (R) (cf. [BKS02, Corollary 7.7]).

Proposition 1 (cf., e.g., [BKS02]). Let A ⊂ (0,∞) be an unbounded
set and let {Iη}η∈A := {(xη, yη)}η∈A be a family of intervals Iη ⊂ R

such that |Iη| = yη − xη → ∞ as η → ∞. If ϕ ∈ AP , then the limit
M(ϕ) := limη→∞

1
|Iη|
∫
Iη
ϕ(x)dx exists, is finite, and is independent of the

particular choice of the family {Iη}.

Definition 2. Let ϕ ∈ AP . The numberM(ϕ) given by Proposition 1 is called
the Bohr mean value or simply the mean value of ϕ.

In the matrix case the mean value is defined entry-wise.

7.3 Matrix AP Factorization

Since our results will be obtained through certain factorizations of the in-
volved matrix functions, we will therefore recall the definitions of right and
left AP factorization. In this framework we will denote by GX the group of
all invertible elements from a Banach algebra X.

Definition 3. A matrix function Φ ∈ GAPN×N is said to admit a right AP
factorization if it can be represented in the form

Φ(x) = Φ−(x)D(x)Φ+(x) (7.5)
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for all x ∈ R, with Φ− ∈ GAPN×N
− , Φ+ ∈ GAPN×N

+ , and where D is a diago-
nal matrix of the form D(x) = diag(eiλ1x, . . . , eiλNx), λj ∈ R. The numbers λj
are called the right AP indices of the factorization. A right AP factorization
with D = IN×N is referred to as a canonical right AP factorization.

In another way, it is said that a matrix function Φ ∈ GAPN×N admits a
left AP factorization if instead of (7.5) we have Φ(x) = Φ+(x)D(x)Φ−(x)
for all x ∈ R, and Φ± and D having the same properties as above.

Remark 1. It is readily seen from the above definition that if an invertible
almost periodic matrix function Φ admits a right AP factorization, then Φ̃
admits a left AP factorization, and also Φ−1 admits a left AP factorization.

The vector containing the right AP indices will be denoted by k(Φ), i.e., in
the above case k(Φ) := (λ1, . . . , λN ). If we consider the case with equal right
AP indices (k(Φ) = (λ1, λ1, . . . , λ1)), then the matrix d(Φ) := M(Φ−)M(Φ+)
is independent of the particular choice of the right AP factorization (cf.,
e.g., [BKS02, Proposition 8.4]). In this case the matrix d(Φ) is called the
geometric mean of Φ.

7.4 Semi-Almost Periodic and Piecewise Almost
Periodic Functions

Let C(Ṙ) (with Ṙ := R ∪ {∞}) represent the (bounded and) continuous
functions ϕ on the real line for which the two limits ϕ(−∞) := limx→−∞ ϕ(x),
ϕ(+∞) := limx→+∞ ϕ(x) exist and coincide. The common value of these
two limits will be denoted by ϕ(∞). Furthermore, C0(Ṙ) will stand for the
functions ϕ ∈ C(Ṙ) for which ϕ(∞) = 0.

We denote by PC := PC(Ṙ) the C∗-algebra of all bounded piecewise
continuous functions on Ṙ, and we also put C(R̄) := C(R)∩PC, where C(R)
denotes the usual set of continuous functions on the real line. Use will also be
made of the C∗-algebra PC0 := {ϕ ∈ PC : ϕ(±∞) = 0}.

We are now in a position to define the C∗-algebra of semi-almost periodic
elements.

Definition 4. The C∗-algebra SAP of all semi-almost periodic functions on
R is the smallest closed subalgebra of L∞(R) that contains AP and C(R̄) :

SAP := algL∞(R){AP,C(R̄)} .

In [Sa77] Sarason proved the following theorem which reveals in a different
way the structure of the SAP algebra.

Theorem 2. Let u ∈ C(R̄) be any function for which u(−∞) = 0 and
u(+∞) = 1. If ϕ ∈ SAP , then there exist ϕ�, ϕr ∈ AP and ϕ0 ∈ C0(Ṙ)
such that ϕ = (1− u)ϕ� + uϕr + ϕ0. The functions ϕ�, ϕr are uniquely deter-
mined by ϕ, and independent of the particular choice of u. The maps ϕ �→ ϕ�
and ϕ �→ ϕr are C∗-algebra homomorphisms of SAP onto AP .
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Remark 2. The last theorem is also valid in the matrix case.

Let us consider the closed subalgebra of L∞(R) generated by all the al-
most periodic and the piecewise continuous functions. We will denote it by
PAP := algL∞(R){AP,PC}. It is readily seen that SAP ⊂ PAP . In the scalar
case it was proved that PAP = SAP +PC0. The same situation is also valid
in the matrix case considering the decomposition entry-wise. In addition, the
next proposition is the matrix version of a known corresponding result for the
representation of PAP elements in the scalar case (cf., e.g., [BKS02, Propo-
sition 3.15]).

Proposition 2. (i) If Φ ∈ PAPN×N , then there are uniquely determined
matrix-valued functions Θ�, Θr ∈ APN×N , and Φ0 ∈ PCN×N

0 such that

Φ = (1− u)Θ� + uΘr + Φ0 ,

where u ∈ C(R), 0 ≤ u ≤ 1, u(−∞) = 0, and u(+∞) = 1.
(ii)If Φ ∈ GPAPN×N, then there exist matrix-valued functions Θ ∈ GSAPN×N

and Ξ ∈ GPCN×N such that Ξ(−∞) = Ξ(+∞) = IN×N and

Φ = ΘΞ .

(iii) The elements Θ� and Θr used in (i) coincide with the local representatives
of Θ ∈ GSAPN×N used in (ii), and their unique existence is ensured by
Theorem 2 and Remark 2.

Proof. The proof of proposition (i) follows in the same lines as the proof of
the scalar case (cf. [BKS02, Proposition 3.15]), and therefore it is omitted
here.

The proof of proposition (ii) requires certain differences when compared
to the scalar case, and therefore will be performed here for the reader’s con-
venience. Suppose that Φ ∈ GPAPN×N , and put Υ := (1−u)Θ�+uΘr. Then
Φ = Υ + Φ0. There is an M ∈ (0,∞) such that |detΥ (x)| is bounded away
from zero for |x| > M , and therefore we can find an element Υ0 ∈ [C0(Ṙ)]N×N

such that Θ := Υ + Υ0 ∈ GSAPN×N . This allows us to rewrite Φ in the form

Φ = Θ + Φ0 − Υ0 = Θ[I +Θ−1(Φ0 − Υ0)] =: ΘΞ , (7.6)

where it is clear that Ξ = Θ−1Φ ∈ GPCN×N and Ξ(−∞) = Ξ(+∞) = IN×N .
The part (iii) follows immediately from the construction made in (ii).

Remark 3. Due to the item (iii) of Proposition 2, Θ� and Θr are also called
the local representatives of Φ at −∞ and +∞, respectively.

7.5 The Besicovitch Space

In this section we introduce notation and results about the Besicovitch space.
For the corresponding proofs, the reader may consult [BKS02, Chapter 7] and
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the references therein (cf., e.g., [BKS02, page 130]). Denote by AP 0 the set
of all almost periodic polynomials. The Besicovitch space B2 is defined as the
completion of AP 0 with respect to the norm ‖ϕ‖B2 :=

(∑
λ |ϕλ|2

)1/2, where
ϕ =

∑
λ ϕλeλ ∈ AP 0. Let RB denote the Bohr compactification of R and

dμ the normalized Haar measure on RB (see, e.g., [BKS02, Chapter 7]). It is
known that AP can be identified with C(RB) and also that we can identify B2

with L2(RB , dμ). Thus, B2 is a (nonseparable) Hilbert space, and the inner
product in B2 = L2(RB , dμ) is given by

(f, g) :=
∫

RB

f(ξ)g(ξ) dμ(ξ). (7.7)

For f, g ∈ AP it also holds that (f, g) = limT→∞
1

2T

∫ T
−T f(x)g(x) dx. Since

μ(RB) = 1 is finite, AP is contained in B2. Moreover, AP is a dense subset
of B2.

The Cauchy–Schwarz inequality shows that the mean value M(f) :=∫
RB
f(ξ) dμ(ξ) exists and is finite for every f ∈ B2. For f ∈ B2, the set

Ω(f) := {λ ∈ R : M(fe−λ) �= 0} is called the Bohr–Fourier spectrum of f
and can be shown to be at most countable. Taking into account (7.7), one can
prove that for every f ∈ B2, ‖f‖2B2 =

∑
λ∈Ω(f) |M(fe−λ)|2. Let #2(R) denote

the collection of all functions f : R → C for which the set {λ ∈ R : f(λ) �= 0} is
at most countable, and ||f ||2�2(R) :=

∑ |f(λ)|2 <∞. Further, #∞(R) is defined
as the set of all functions f : R → C such that ||f ||�∞(R) := supλ∈R |f(λ)| <∞.
Note that #2(R) is a (nonseparable) Hilbert space with pointwise operations
and the inner product (f, g) :=

∑
λ∈R

f(λ)g(λ), and that #∞(R) is a C∗-
algebra with pointwise operation and the norm || · ||�∞(R).

The map FB : #2(R) → B2 which sends a function f ∈ #2(R) with a finite
support to the function (FBf)(x) =

∑
λ∈R

f(λ)eiλx (x ∈ R) can be extended
by continuity to all #2(R). The operator FB is referred to as the Bohr–Fourier
transform. This operator is an isometric isomorphism in the above-mentioned
setting, and its inverse acts by the rule

F−1
B : B2 → #2(R), (F−1

B f)(λ) = M(fe−λ), λ ∈ R .

If a ∈ #∞(R), then the operator ψ(a) : B2 → B2 defined by ψ(a) := FB a·F−1
B

is bounded.

7.6 Generalized Matrix AP Factorization

Let B2
± denote the Hilbert spaces consisting of the functions in B2 with the

Bohr–Fourier spectra in R± = {x ∈ R : ±x ≥ 0}.

Definition 5. A generalized right AP factorization of a matrix function Φ ∈
GAPN×N is a representation
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Φ = Φ−DΦ+ , (7.8)

where D = diag(eλ1 , . . . , eλN
) with λ1, . . . , λN ∈ R and Φ− ∈ G[B2

−]N×N ,
Φ+ ∈ G[B2

+]N×N , Φ−P̃Φ
−1
− I ∈ L(B2

N ). Here P̃ is the projection P̃ :=
FBχ+F

−1
B ∈ L(B2

N ) (with χ+ being the characteristic function of R+).
The numbers λj are called the right AP indices of the factorization. A

generalized right AP factorization with D = IN×N is referred to as a canonical
generalized right AP factorization.

In another way, it is said that a matrix function Φ ∈ GAPN×N admits a
generalized left AP factorization if instead of (7.8) we have Φ = Φ+DΦ−
with Φ± and D having the same properties as above.

If Φ admits a right generalized AP factorization, then Φ̃ admits a left
generalized AP factorization, and also Φ−1 admits a left generalized AP fac-
torization.

The corresponding definition of the geometric mean value is literally the
same as in Section 7.3.

7.7 Matrix Wiener–Hopf Operators with PC Symbols

We recall here some of the essential facts from the theory of Wiener–Hopf and
Hankel operators. The following equality is well known:

WΦΨ = WΦ#0WΨ +HΦ#0HΨ̃ , (7.9)

for Φ, Ψ ∈ [L∞(R)]N×N . The next proposition is the matrix version of the
classical scalar case, which is also obviously valid for the matrix case (one can
derive the matrix case result by using the scalar one entry-wise).

Proposition 3. If Θ ∈ [C(Ṙ)]N×N , then the Hankel operators HΘ and H
Θ̃

are compact.

We can equivalently rewrite (7.9) as WΦΨ − WΦ#0WΨ = HΦ#0HΨ̃ , and
therefore Proposition 3 directly yields the following known result.

Theorem 3. If Φ, Ψ ∈ [L∞(R)]N×N and at least one of the functions Φ, Ψ
belongs to [C(Ṙ)]N×N , then WΦΨ −WΦ#0WΨ is compact.

Now, employing a continuous partition of the identity, one can sharpen
Theorem 3 as follows.

Theorem 4. If Φ, Ψ ∈ PCN×N and if at each point x0 ∈ Ṙ at least one of
the functions Φ and Ψ is continuous, then WΦΨ −WΦ#0WΨ is compact.
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Proof. The result can be proved by following the same arguments as in the
scalar case [Kr87, Lemma 16.2], with corresponding changes for matrices in
the places of functions. Namely, let x1, . . . , x� and x�+1, . . . , xr denote all
the points of discontinuity of the matrix functions Φ and Ψ , respectively.
Then, let Θ and Ξ be continuous matrix functions on Ṙ with the following
properties: Θ(xk) = 0N×N , k = 1, . . . , #, Ξ(xk) = 0N×N , k = # + 1, . . . , r,
and Θ+Ξ ≡ IN×N . This construction of Θ and Ξ make it clear that ΦΘ and
ΞΨ are continuous on Ṙ. From Theorem 3 and Θ +Ξ = IN×N , we have

WΦΨ = WΦ(Θ+Ξ)Ψ =WΦΘΨ+WΦΞΨ =WΦΘ#0WΨ +K1 +WΦ#0WΞΨ +K2

= WΦΘ#0WΨ +WΦ#0WΞΨ +K3

= (WΦ#0WΘ +K4)#0WΨ +WΦ#0(WΞWΨ +K5) +K3

= WΦ#0WΘ#0WΨ +K6 +WΦ#0WΞ#0WΨ +K7 +K3

= WΦ#0(WΘ +WΞ)#0WΨ +K8

= WΦ#0WΨ +K8 ,

where Ki are compact operators (i = 1, . . . , 8). From here we derive that
WΦΨ −WΦ#0WΨ is a compact operator.

Theorem 5 (cf., e.g., [BKS02, Theorem 5.10]). Let Φ ∈ GPCN×N , and
denote by sp[Φ−1(x−0)Φ(x+0)] the set of eigenvalues of the matrix Φ−1(x−
0)Φ(x+ 0). In view of WΦ to have the Fredholm property it is necessary and
sufficient that sp[Φ−1(x− 0)Φ(x+ 0)] ∩ (−∞, 0] = ∅, for all x ∈ Ṙ.

7.8 Matrix Wiener–Hopf Operators with SAP Symbols

Regarding matrix Wiener–Hopf operators with SAP symbols, a Fredholm
characterization of this kind of operators is now well known.

Theorem 6 ([BKS02, Theorem 18.18]). Let Φ ∈ SAPN×N . The operator
WΦ is Fredholm if and only if the following three conditions are satisfied:

(i) Φ ∈ GSAPN×N ,
(ii) WΦ	

and WΦr
are invertible operators,

(iii) sp[d−1(Φr)d(Φ�)] ∩ (−∞, 0] = ∅, where sp[d−1(Φr)d(Φ�)] stands for the
set of the eigenvalues of the matrix d−1(Φr)d(Φ�) := [d(Φr)]−1d(Φ�).

7.9 Matrix Wiener–Hopf Operators with PAP Symbols

The next proposition is the matrix version of a known corresponding result
for the scalar case (cf., e.g., [BKS02, Proposition 3.15]).
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Proposition 4. If Φ ∈ GPAPN×N , then there exist matrix-valued functions
Θ ∈ GSAPN×N and Ξ ∈ GPCN×N such that Ξ(−∞) = Ξ(+∞) = IN×N ,

Φ = ΘΞ , (7.10)

and

WΦ = WΘ#0WΞ +K1 = WΞ#0WΘ +K2 (7.11)

with compact operators K1,K2.

Proof. The fact that the factorization (7.10) is always possible under the
conditions of the present theorem was deduced in the proof of Proposition 2.
Hence, let us assume that Φ is factorized and is given by the formula (7.10).
Since Θ is continuous on R and Ξ is continuous at ∞, we have that Θ and Ξ
do not have common points of discontinuity. Now reasoning in a similar way as
in the proof of Theorem 4 (e.g., considering two continuous matrix functions
on Ṙ, such that the sum of them is the identity matrix, and vanishing at the
points of discontinuity of Θ and Ξ) and also taking profit from Theorem 3,
we deduce that (7.11) holds for compact operators K1 and K2.

The next result is only the matricial formulation of the corresponding
scalar case in which the known scalar arguments also turn out to be valid in
the more general matricial case. Anyway, we will present here its complete
proof for the reader’s convenience.

Theorem 7. Let Φ ∈ PAPN×N . If Φ �∈ GPAPN×N , then WΦ is not semi-
Fredholm. Assume now that Φ ∈ GPAPN×N , then WΦ is Fredholm if and only
if

(i) Φ� and Φr admit a canonical generalized right AP factorization,
(ii) sp[d−1(Φr)d(Φ�)] ∩ (−∞, 0] = ∅ ,
(iii) sp[Φ−1(x− 0)Φ(x+ 0)] ∩ (−∞, 0] = ∅ ,

for all x ∈ R.

Proof. If Φ �∈ GPAPN×N , then Φ �∈ G[L∞(R)]N×N and therefore WΦ is not
semi-Fredholm due to the corresponding Simonenko result [Si68].

Let us now consider Φ ∈ GPAPN×N . Then we can write (cf. for-
mula (7.10)) Φ = ΘΞ (with Θ ∈ GSAPN×N , Ξ ∈ GPCN×N , and Ξ(±∞) =
IN×N ) such that WΦ = WΘ#0WΞ + K, for a compact operator K. From
here we infer that WΦ is a Fredholm operator if and only if WΘ and WΞ

are also Fredholm operators. In the present context, these last two opera-
tors are Fredholm if and only if the conditions of the theorem are satisfied.
More precisely, since WΘ is a Wiener–Hopf operator with an invertible semi-
almost periodic matrix symbol, and with lateral representatives Θ� = Φ� and
Θr = Φr (cf. Proposition 2), then WΘ is Fredholm if and only if (cf. Theo-
rem 6) Φ� and Φr admit a canonical generalized right AP factorization, and
sp[d−1(Θr)d(Θ�)] ∩ (−∞, 0] = ∅.
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We turn now to the operatorWΞ . This operator has an invertible piecewise
continuous matrix symbol. Therefore, applying Theorem 5, we obtain thatWΞ

is Fredholm if and only if sp[Ξ−1(x− 0)Ξ(x+ 0)]∩ (−∞, 0] = ∅, x ∈ R. Now
we simply have to observe that Ξ−1(x− 0)Ξ(x+ 0) = Φ−1(x− 0)Φ(x+ 0), to
reach the final conclusion (recall also that #0 is an invertible operator).

7.10 Matrix Wiener–Hopf–Hankel Operators with PAP
Symbols

We are now in a position to present the main theorem of this chapter.

Theorem 8. Let Φ ∈ GPAPN×N . Then WΦ + HΦ and WΦ − HΦ are both
Fredholm operators if and only if

(i) Φ�Φ̃
−1
r admits a canonical generalized right AP factorization,

(ii) sp[d(Φ�Φ̃−1
r )] ∩ iR = ∅ ,

(iii) sp[Φ(−x+ 0)Φ−1(x− 0)Φ(x+ 0)Φ−1(−x− 0)] ∩ (−∞, 0] = ∅ , x ∈ R.

Proof. Part of the proof of this main theorem is based on what is called the
equivalence after extension operator relation (cf., e.g., [BaTs92]). Using the
Gohberg–Krupnik–Litvinchuk identity (cf., e.g., [KaSa01]), and the methods
presented in [CaSp98] we can ensure that diag(WΦ +HΦ,WΦ −HΦ) is equiv-
alent after extension to W

ΦΦ̃−1 .

We will first prove the “if” part of the theorem. Set Ψ := ΦΦ̃−1 to sim-
plify the notation. Direct computations lead to Ψ� = Φ�Φ̃

−1
r and Ψr = ΦrΦ̃

−1
� .

Therefore, we also have Ψ� = Ψ̃−1
r . From the hypothesis of the theorem (cf.

condition (i) of the present theorem) we have that Ψ� admits a canonical gener-

alized right AP factorization. Using formula Ψ� = Ψ̃−1
r , we deduce that Ψr also

admits a canonical generalized rightAP factorization. From now on we will use
the notation Λ := d(Ψ�). From condition (ii) of the present theorem we derive
that sp[Λ2]∩ (−∞, 0] = ∅. In fact, as far as we know that Ψ� admits a canoni-
cal generalized right AP factorization, we can write it in the normalized way
Ψ� = Π−ΛΠ+, whereΠ± have the same factorization properties as the original
lateral factors of the canonical generalized factorization but withM(Π±) = I.

Thus, the identity Ψ� = Π−ΛΠ+ allows Ψr = Ψ̃−1
� = Π̃−1

+ Λ−1Π̃−1
− , which in

particular shows that d(Ψr) = Λ−1, and hence d−1(Ψr) = Λ. Consequently,
Λ2 = d−1(Ψr)d(Ψ�) and condition (ii) of the present theorem is equivalent to
sp[d−1(Ψr)d(Ψ�)] ∩ (−∞, 0] = ∅.

Condition (iii) allows us to conclude that sp[Ψ−1(x − 0)Ψ(x + 0)] ∩
(−∞, 0] = ∅. Altogether, we can conclude from Theorem 7 that WΨ is a
Fredholm operator. Employing the above-mentioned equivalence after exten-
sion relation, we obtain that WΦ+HΦ and WΦ−HΦ are Fredholm operators.
Thus the “if” part is proved.
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Now we will proceed to prove the “only if” part. Assume that Φ ∈
GPAPN×N and that WΦ ±HΦ have the Fredholm property. Thus, from the
above-mentioned equivalence after extension relation, it follows that WΨ is
also a Fredholm operator. Therefore, condition (i) of Theorem 7 ensures that

Φ�Φ̃
−1
r = Ψ� admits a canonical generalized right AP factorization (and also

that Ψr admits a canonical generalized right AP factorization).
Moreover, the corresponding conditions (ii)–(iii) of Theorem 7 are also

satisfied for the function Ψ . As a consequence, reasoning in a very similar way
as in the “if” part, we reach the conclusion that sp[d(Φ�Φ̃−1

r )] ∩ iR = ∅, and
sp[Φ(−x+ 0)Φ−1(x− 0)Φ(x+ 0)Φ−1(−x− 0)]∩ (−∞, 0] = ∅. Hence the “only
if” part is proved.
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8.1 Introduction

Many heterogeneous structural materials have a complex or irregular geometry
which is not easy to model using classical geometry. Fractal geometry gives
a way to model irregularities in a wide range of scientific and engineering
domains.

In this chapter, we are interested in the relaxation of some perturbed
elastic problems, where the perturbations are localized along fractal zones.

First, we consider an elastic material with thin inclusions of higher rigidity
repeated in a self-similar way. We prove that the relaxed elastic energy of the
heterogeneous material filling in a bounded domain Ω ⊂ Rn, n = 2, 3, turns
out to be of the form∫

Ω

σ (u) : e (u) dx+ c2n−1π
μ (χ+ 1)

χ

1
Hd (K)

∫
K∩Ω

|u|2 dHd,

where σ (u) is the stress tensor, e (u) is the deformation tensor for some admis-
sible displacement u, c is a positive constant, μ and χ are material coefficients,
Hd is the d-dimensional Hausdorff measure, and d is the similarity dimension
of the fractal K. Here σ (u) : e (u) denotes the product σij (u) eij (u), where
the summation convention with respect to repeated indices is used.

The relaxation of the scalar version of this problem has been given
in [BrNo93], studying the asymptotic behavior of the capacity of sets con-
sisting of thin inclusions.

As a second example, we consider an interfacial problem, namely a fractal

a von Koch curve located in a domain Ω which is filled in with an elastic
material. A perfect contact is supposed to occur on thin patches disposed on
the defect. The relaxed elastic energy is proved to be∫

Ω\Σ
σ (u) : e (u) dx+ c

μ

(χ+ 1)
1

Hd (Σ)

∫
Σ

|[u]Σ |
2
dHd,

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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defect in a two-dimensional material. We consider a defect Σ associated to
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where [u]Σ is the jump of the displacement u across Σ.
A complete characterization of contact problems on a fractal interface

Σ has been given in [ElBr08]. A typical extra term which appears in the
relaxed energies is of the form

∫
Σ
aij [ui]Σ [uj ]Σ dHd, where (aij)i,j=1,··· ,n is a

symmetric and positive definite matrix of Borel functions from Σ to [0,+∞]
(see [ElBr08] for more details).

In these two problems, the extra term is generated by the presence of
boundary layers near the perturbed zones. The characterization of the asymp-
totic energy is given using Γ -convergence methods (see [At84], [Da93]).

8.2 Self-Similar Highly Rigid Inclusions

Let Ω be an open and bounded subset of Rn, n = 2, 3, with Lipschitz con-
tinuous boundary ∂Ω. Denote by ψ1, . . . , ψN a finite family of contractive
similitudes on Rn with ratio ρ < 1. There exists a unique compact subset
K ⊂ Rn such that K = ∪Ni=1ψi (K).

The real number d = − ln (N) / ln (ρ) is the dimension ofK. For the defini-
tions of the self-similar fractal K, its dimension, and the d-dimensional Haus-
dorff measure Hd, we refer to [Hu81]. We suppose that the family (ψi)i=1,...,N
satisfies the open set condition, which requires the existence of a bounded
open set U ⊂ Rn such that⎧⎨⎩

Hd (K\U) = 0,
ψi (U) ⊂ U ∀i ∈ {1, . . . , N} ,

ψi (U) ∩ ψj (U) = ∅ if i �= j.

Choose x0 ∈ U and define r = dist (x0, ∂U) /2. Let c > 0. For every h ∈ N,
we set εh := rρh and

rh :=

{
c (εh)

d if n = 3,
exp
(

−1
c (εh)

d
)

if n = 2.

Let B (x,R) be the ball of radius R and centered at 0, and T = B (0, 1)
be the unit ball. We define⎧⎪⎨⎪⎩

xi1,...,ih = ψi1 ◦ · · · ◦ ψih (x0) i1, . . . , ih ∈ {1, 2, . . . , N} ,
Ti1,...,ih = xi1,...,ih + rhT,

Th = ∪
i1,...,ih∈{1,2,...,N}

Ti1,...,ih .

We define the space Wh as

Wh =
{
u ∈ H1 (Ω\Th; Rn) | u = 0 on ∂ (Ω\Th)

}
and the functional Fh defined on L2 (Ω; Rn) through
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Fh (u) =
{ ∫

Ω\Th
σij (u) eij (u) dx if u ∈Wh,

+∞ otherwise,

where the stress tensor σ (v) = (σij (v))i,j=1,··· ,n is linked to the linearized

deformation tensor e (v) = (eij (v))i,j=1,...,n, eij (v) = 1
2

(
∂vi

∂xj
+ ∂vj

∂xi

)
, through

Hooke’s law σij (v) = λekk (v) δij+2μeij (v), where the summation convention
with respect to repeated indices has been used. The constants λ ≥ 0, μ > 0
are the Lamé coefficients of the elastic material. Given f ∈ L2 (Ω; Rn), we
consider the following problem:

min
u∈L2(Ω;Rn)

{
Fh (u)− 2

∫
Ω

f · udx
}
. (8.1)

8.2.1 Local Problems

We consider the following boundary value problems (m = 1, . . . , n):⎧⎪⎪⎨⎪⎪⎩
−σij,j (wn,m) = 0 in Rn\T , i = 1, . . . , n,

wn,m = em on ∂T,
wn,m → 0 as |y| → ∞, for n = 3,
wn,mi = δim ln (|y|) +O (1) as |y| → ∞, for n = 2,

(8.2)

where em = (δ1m, . . . , δnm) and δlm = 1 if m = l, δlm = 0 if m �= l. The
solution wn,m of this problem can be expressed in terms of the single-layer
potential as

wn,mi (x) = −
∫
∂T

Gnik (x, .)σkj (wn,m) νjdsy + ciδn2, i = 1, . . . , n,

where ν is the outward unit normal with respect to ∂T , ci, i = 1, 2, is some
constant (introduced if n = 2), and the tensor Gn, n = 2, 3, is given through⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G3 (x, y) = 1

4πμ(χ+1)

(
χId

R3

|x−y| + (x−y)(x−y)t

|x−y|3
)
,

G2 (x, y) = 1
2πμ(χ+1)

×

⎛⎝ χ ln |x− y| − (x1−y1)2
|x−y|2 − (x1−y1)(x2−y2)

|x−y|2

− (x1−y1)(x2−y2)
|x−y|2 χ ln |x− y| − (x2−y2)2

|x−y|2

⎞⎠ ,
where χ = λ+3μ

λ+μ is Muskhelishvili’s parameter and IdR3 is the 3 × 3 identity
matrix. G3 is the Kelvin–Somigliana tensor and G2 is the Boussinesq ten-
sor [PaPe84]. The boundary conditions in (8.2) lead to the following equality:∫

∂T

σij (wn,m) νjdsy = −δim2n−1π
μ (χ+ 1)

χ
,

from which we deduce the following result.
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Lemma 1. 1.
∫

R3\T σij
(
w3,m

)
eij
(
w3,l
)
dx = δlm4πμ (χ+ 1) /χ.

2. limR→∞
1

ln(R)

∫
B(0,R)\T σij

(
w2,m

)
eij
(
w2,l
)
dx = δlm2πμ (χ+ 1) /χ.

We now build the local functions wn,mh through⎧⎪⎪⎨⎪⎪⎩
w2,m
h (x) = −1

ln(rh)

(
w2,m
h

(
x−xi1,...,ih

rh

)
−em

)
∀i1, . . . , ih ∈ {1, · · · , N} ,

w3,m
h (x) = w3,m

h

(
x−xi1,...,ih

rh

)
− em ∀i1, . . . , ih ∈ {1, . . . , N} .

Choose a sequence (sh)h of positive numbers satisfying

lim
h→∞

sh = 0, lim
h→∞

sh
rh

= lim
h→∞

εh
sh

= 0.

We define the set Bh (sh) = ∪i1,...,ih∈{1,2,...,N}B (xi1,...,ih , sh).

Lemma 2. For every ϕ ∈ C1 (Ω), we have

lim
h→∞

∫
(Bh(sh)\Th)∩Ω σij (wn,mh ) eij

(
wn,lh

)
ϕdx

= crdδim2n−1π μ(χ+1)
χHd(K)

∫
K∩Ω ϕ (x) dHd.

Proof. We give the proof for n = 2, the case n = 3 following in a similar way.
Observe that∫

(Bh(sh)\Th)∩Ω σij
(
w2,m
h

)
eij

(
w2,l
h

)
ϕdx

=
∑

i1,...,ih∈{1,...,N}
B(xi1,...,ih

,rh)⊂Ω

−1
ln(rh)ϕ (xi1,...,ih)

×
(

−1
ln(rh)

∫
(Bh(sh/rh)\B(0,1)) σij

(
w2,m

)
eij
(
w2,l
)
dy
)

+ o
( 1
h

)
,

where y = (x− xi1,··· ,ih) /rh. Using Lemma 1, we have

lim
h→∞

∫
(Bh(sh)\Th)∩Ω σij (wn,mh ) eij

(
wn,lh

)
ϕdx

= 2π μ(χ+1)
χ lim

h→∞

∑
i1,...,ih∈{1,...,N}
B(xi1,...,ih

,rh)⊂Ω

−1
ln(rh)ϕ (xi1,...,ih) .

Because −1/ ln (rh) = c (εh)
d = crdρdh = crd/Nh, one has, according to

the ergodicity result [Fa97, Theorem 6.1],

lim
h→∞

∑
i1,...,ih∈{1,2,...,N}
B(xi1,...,ih

,rh)⊂Ω

−1
ln(rh)ϕ (xi1,...,ih)

= crd lim
h→∞

∑
i1,...,ih∈{1,...,N}
B(xi1,...,ih

,rh)⊂Ω

1
Nhϕ (xi1,...,ih) = crd 1

Hd(K)

∫
K∩Ω ϕ (x) dHd,

which gives the result.
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8.2.2 Convergence

Let uh be the solution of (8.1). Then Fh
(
uh
)
− 2
∫
Ω
f · uhdx ≤ Fh (0) = 0.

This implies ∫
Ω\Th

σij
(
uh
)
eij
(
uh
)
dx ≤ C

(∫
Ω

∣∣uh∣∣2 dx)1/2

. (8.3)

There exists an extension operator Ph from Wh to L2
(
Ω; R2

)
such that⎧⎨⎩ Ph

(
uh
)

=
{
uh in Ω\Th,
0 on ∂ (Ω\Th) ,∫

Ω
σij
(
Ph
(
uh
))
eij
(
Ph
(
uh
))
dx ≤ C

∫
Ω\Th

σij
(
uh
)
eij
(
uh
)
dx,

where C is a constant independent of h. Thus, from (8.3),∫
Ω

σij
(
Ph
(
uh
))
eij
(
Ph
(
uh
))
dx ≤ C

∥∥Ph (uh)∥∥L2(Ω;R2) . (8.4)

On the other hand, according to Korn’s inequality, there exists a constant
C independent of h such that∫

Ω

∣∣∇ (Ph (uh))∣∣2 dx ≤ C ∫
Ω

σij
(
Ph
(
uh
))
eij
(
Ph
(
uh
))
dx (8.5)

and, from Poincaré’s inequality,∫
Ω

∣∣Ph (uh)∣∣2 dx ≤ C ∫
Ω

∣∣∇ (Ph (uh))∣∣2 dx. (8.6)

From (8.4), (8.5), and (8.6), we deduce that the sequence
(
Ph
(
uh
))
h

is
bounded in H1

0
(
Ω; R2

)
. Thus, up to some subsequence,

(
Phu

h
)
h

converges to
some u in L2

(
Ω; R2

)
-strong. Our main result in this section reads as follows.

Theorem 1. The sequence (Fh)h Γ -converges to the functional F∞ defined
through

F∞ (u) =

⎧⎪⎪⎨⎪⎪⎩
∫
Ω
σij (u) eij (u) dx+ crd2n−1π μ(χ+1)

χHd(K)

∫
K∩Ω |u|

2
dHd

if u ∈ H1
0
(
Ω; R2

)
∩ L2

d

(
Ω ∩K; R2

)
,

+∞ otherwise,

where the Γ -convergence is taken with respect to the strong topology of
L2
(
Ω; R2

)
and where L2

d

(
Ω ∩K; R2

)
is the space defined as

L2
d

(
Ω ∩K; R2) =

{
u : Ω → R2 |

∫
K∩Ω

|u|2 dHd <∞
}
.



www.manaraa.com

80 A. Brillard and M. El Jarroudi

Proof. Let ϕi1,...,ih be a smooth truncation function satisfying

ϕi1,...,ih (x) =
{

1 in B
(
xi1,...,ih ,

sh

2

)
i1, . . . , ih ∈ {1, . . . , N} ,

0 in Ω\B (xi1,...,ih , sh) i1, . . . , ih ∈ {1, . . . , N} .

For every u ∈ C1
c

(
Ω; R2

)
, we define the test function uh0 through

uh0 (x) = u (1− ϕi1,...,iN ) + ϕi1,...,iNw
n,m
h um. (8.7)

Then uh0 ∈ Wh and
(
uh0
)
h

converges to u in L2
(
Ω; R2

)
-strong. Using

Lemma 2, one can verify that limh→∞ Fh
(
uh0
)

= F∞ (u).
Let u be any function in H1

0
(
Ω; R2

)
∩ L2

d

(
Ω ∩K; R2

)
. There exists a

sequence
(
uk
)
k
⊂ C1

c

(
Ω; R2

)
converging to u in the strong topology of

H1
0
(
Ω; R2

)
. Defining the sequence

(
uk,h0

)
h

through (8.7) for every k, one can

see that
(
uk,h0

)
h

converges to uk in L2
(
Ω; R2

)
-strong, and limh→∞ Fh

(
uk,h0

)
= F∞

(
uk
)
. The continuity of F∞ with respect to the strong topology of

H1
0
(
Ω; R2

)
implies that limk→∞ limh→∞ Fh

(
uk,h0

)
= F∞ (u). Then, we con-

clude using the diagonalization argument of [At84, Corollary 1.18].
Let now

(
uh
)
h

be any sequence such that uh ∈ Wh and
(
uh
)
h

converges
to u ∈ H1

0
(
Ω; R2

)
∩L2

d

(
Ω ∩K; R2

)
in the strong topology of L2

(
Ω; R2

)
. We

write the following subdifferential inequality:

Fh
(
uh
)
≥ Fh

(
uk,h0

)
+ 2
∫
Ω\Th

σij

(
uk,h0

)
eij

(
uh − uk,h0

)
dx.

We observe that∫
Ω\Th

σij

(
uk,h0

)
eij

(
uh − uk,h0

)
dx = −

∫
Ω\Th

σij,j

(
uk,h0

)(
uhi −

(
uk,h0

)
i

)
dx.

Because σij,j
(
w2,m
h

)
= 0, one gets

lim
h→∞

∫
Ω\Th

σij

(
uk,h0

)
eij

(
uh − uk,h0

)
dx = −

∫
Ω

σij,j
(
uk
) (
ui −

(
uk0
)
i

)
dx.

Thus

lim inf
h→∞

Fh
(
uh
)
≥ F∞

(
uk
)
− 2
∫
Ω

σij,j
(
uk
) (
ui −

(
uk0
)
i

)
dx.

Letting k go to ∞, one gets lim infh→∞ Fh
(
uh
)
≥ F∞ (u), which ends the

proof.

From the properties of the Γ -convergence, we deduce the following con-
vergence result.



www.manaraa.com

8 Fractal Relaxed Problems in Elasticity 81

Corollary 1. The sequence
(
uh
)
h
, where uh is the solution of (8.1), con-

verges in the strong topology of L2
(
Ω; R2

)
to the solution u ∈ H1

0
(
Ω; R2

)
∩

L2
d

(
Ω ∩K; R2

)
of the limit minimization problem

min
u∈L2(Ω;R2)

{
F∞ (u)− 2

∫
Ω

f · udx
}
,

and limh→∞ Fh
(
uh
)

= F∞ (u).

8.3 Interface Case: Fractal Defect

We define the contractive similitudes ψ1, ψ2, ψ3, and ψ4 on R2 as ψk (x) =
ak +Rkx, with⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a1 = (0, 0) , R1 = IdR2 ,

a2 = (1/3, 0) , R2 =
(

cos (π/3) − sin (π/3)
sin (π/3) cos (π/3)

)
,

a3 = (2/3, 0) , R3 =
(

cos (2π/3) − sin (2π/3)
sin (2π/3) cos (2π/3)

)
,

a4 = (1, 0) , R4 = IdR2 .

The compact set Σ defined as Σ = ∪4
i=1ψi (Σ) is the von Koch curve

of Hausdorff dimension d = ln (4) / ln (3). We consider a bounded domain Ω
of R2, with Lipschitz continuous boundary ∂Ω, such that Σ ⊂ Ω. The point
x0 =

(
1/2,

√
3/2
)

= a2 +R2a2 is the summit of Σ. We define, for every h ∈ N,⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi1,...,ih = ψi1 ◦ · · · ◦ ψih (x0) i1, . . . , ih ∈ {1, 2, 3, 4} ,
Bi1,...,ih = xi1,...,ih + rhB (0, 1) ,
Ti1,...,ih = Bi1,...,ih ∩Σ,

Th = ∪
i1,...,ih∈{1,2,3,4}

Ti1,...,ih ,

where rh = exp
(
−3hd/c

)
for a given positive constant c. We define the space

Wc,h =
{
u ∈ H1 (Ω\Σ; R2) | [u]Σ = 0 on Th and u = 0 on ∂Ω

}
,

where [u]Σ is the jump of u across Σ. The trace of u ∈ H1 (Ω\Σ) on Σ exists
for Hd-a.e. x ∈ Σ and belongs to the Besov space Bd (Σ) defined as

Bd (Σ) =

⎧⎪⎨⎪⎩v : Σ → R2 |
∫
Σ

|u|2 dHd +
∫
Σ×Σ

|x−y|<1

|u (x)− u (y)|2

|x− y|2d
dHd <∞

⎫⎪⎬⎪⎭ ,
see [Wa91] for more details. Given f ∈ L2

(
Ω; R2

)
, we consider the following

problem:
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min
u∈L2(Ω;Rn)

{
Fc,h (u)− 2

∫
Ω

f · udx
}
, (8.8)

where the functional Fc,h is defined on L2
(
Ω; R2

)
through

Fc,h (u) =
{ ∫

Ω\Σ σij (u) eij (u) dx if u ∈Wc,h,

+∞ otherwise.

The problem (8.8) has a unique solution uh ∈ Wc,h with
∥∥uh∥∥

H1(Ω\Σ;R2)
≤ C, where C is some positive constant independent of h. Let (y1, y2,Σ) be an
element of Σ. We define R2

Σ as R2
Σ = {(y1, y2) ∈ R2 | y2 > y2,Σ or y2 < y2,Σ ,

∀ (y1, y2,Σ) ∈ Σ}.
We consider the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩

−σij,j (wmΣ ) = 0 in R2
Σ , i,m = 1, 2,

wmΣ = em on Σ,
(wmΣ )i = δim ln (|y|) +O (1) as |y| → ∞,∣∣∣(wmΣ )p

∣∣∣ ≤ C for p �= m.

(8.9)

Here, wmΣ can be computed using the complex potentials of Kolosov–
Muskhelishvili (see [Mu63]) and the conformal mapping from R2

Σ to R2\ [0, 1]
(see [ElBr08] for more details). The elastic energy associated to (8.9) verifies

lim
R→∞

1
ln(R)

∫
R2

Σ
∩B(0,R) σij (wmΣ ) eij

(
wlΣ
)
dx

= δlm
4μ

(χ+1)

∫
Σ
q (s) dHd (s) ,

(8.10)

where 4μ
(χ+1)q (s) dHd (s) = σmj (wmΣ ) νj |Σ , ν is the unit normal to Σ directed

outward the region {y2 > y2,Σ}. The normal strains σmj (wmΣ ) νj |Σ belong to
the dual space of Bd (Σ) (see [ElBr08], [JoWa95], for example). We define the
functions wh,mΣ as wh,mΣ (x) = − 1

ln(rh) (wmΣ ((x− xi1···ih) /rh)− em) and the
space Wc,∞ =

{
u ∈ H1

(
Ω\Σ; R2

)
| [u]Σ ∈ Bd

(
Σ; R2

)
, u = 0 on ∂Ω

}
.

Our main result in this section is the following.

Theorem 2. The sequence (Fc,h)h Γ -converges to the functional Fc,∞ defined
through

Fc,∞ (u) =

⎧⎪⎨⎪⎩
∫
Ω\Σ σij (u) eij (u) dx
+c μγd

(χ+1)Hd(Σ)

∫
Σ
|[u]|2 dHd if u ∈Wc,∞,

+∞ otherwise,

with respect to the strong topology of L2
(
Ω; R2

)
. Here γd =

∫
Σ
q (s) dHd (s).

Proof. Let sh = (1/3)hd. We choose a smooth truncation function ϕi1,··· ,ih for
i1, . . . , ih ∈ {1, 2, 3, 4} satisfying



www.manaraa.com

8 Fractal Relaxed Problems in Elasticity 83

ϕi1,...,ih (x) =
{

1 in B
(
xi1,...,ih ,

sh

2

)
,

0 in Ω\B (xi1,...,ih , sh) .

There exist two open subsetsΩ1 andΩ2 such thatΩ\Σ = Ω1∪Λ∪Ω2, with
Λ = R\ [0, 1]. Let u ∈ C1

(
Ω\Σ; R2

)
be such that u = 0 on ∂Ω. We choose

one of the regular images of 1
2 [u]Σ (resp. − 1

2 [u]Σ) through the continuous
mapping r1Σ from Bd

(
Σ; R2

)
into H1

(
Ω1; R2

)
(resp. r2Σ from Bd

(
Σ; R2

)
into H1

(
Ω2; R2

)
), respectively denoted by r1Σ

( 1
2 [u]Σ

)
and r2Σ

(
− 1

2 [u]Σ
)
. We

define the function uh0 as follows, for every i1, . . . , ih ∈ {1, 2, 3, 4}:

uh0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u (1− ϕi1,...,ih)
+ϕi1,...,ihw

h,m
Σ r1Σ

( 1
2 [um]Σ

)
in B (xi1,...,ih , sh) ∩Ω1,

u (1− ϕi1,...,ih)
+ϕi1,...,ihw

h,m
Σ r2Σ

(
− 1

2 [um]Σ
)

in B (xi1,...,ih , sh) ∩Ω2,
u in Ω\ ∪

i1,...,ih∈{1,2,3,4}
B (xi1,...,ih , sh) .

It is easily seen that uh0 ∈ Wc,h and (uh0 )h converges to u in L2
(
Ω; R2

)
-

strong. On the other hand, one has

Fc,h
(
uh0
)

=
∫
Ω\Σ σij

(
uh0
)
eij
(
uh0
)
dx =

∫
Ω\Σ σij (u) eij (u) dx

+
∑

i1,...,ih∈{1,2,3,4}

−1
ln(rh)

[um][ul](xi1,··· ,ih)
4

×
(

−1
ln(rh)

∫
(Bh(sh/rh)∩R2

Σ) σij (wmΣ ) eij
(
wlΣ
)
dy
)

+ o
( 1
h

)
.

Using (8.10), we get

lim
h→∞

Fc,h
(
uh0
)

=
∫
Ω\Σ σij (u) eij (u) dx+ c μγd

(χ+1)Hd(Σ)

∫
Σ
|[u]|2 dHd

= Fc,∞ (u) .

Using the same method as in the proof of Theorem 1, we conclude that, for
every u ∈ L2

(
Ω; R2

)
Γ -limh→∞ Fc,h (u) = Fc,∞ (u). We then end the proof

in a similar way as in the proof of Theorem 1.

Remark 1. Another interfacial problem may deal with a contact situation in
granular materials. The non-overlapping spherical elastic grains are supposed
to be confined in some bounded domain Ω, and perfect adhesion between
seeds occurs on thin zones disposed along a self-similar fractal K. The asymp-
totic relaxed energy is proved to involve an integral extra term of the form∫
Σ∩K A (x) [u]Σ · [u]Σ dHd (x), where Σ is the union of the boundaries of the

grains and A (x) is a symmetric matrix depending on the position x and on
the material coefficients of the problem. We can also consider a contact prob-
lem on spheres in the Apollonian packing. Here Σ is a fractal set which is not
self-similar and whose fractal dimension d has been numerically determined
in [BoDePe94]. For every h ∈ N∗, we suppose that a perfect adhesion occurs
on thin zones between the N (h) balls of radii larger than the radius ρh of
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some fixed ball Bh. Using the asymptotic relation N (h) ∼ ρ−d
h (see [Bo73]),

we can prove that the relaxed energy takes the above form with an integral
covering the whole Σ.
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9.1 Introduction

Considerable attention has been given to the study of the Hyers–Ulam
and Hyers–Ulam–Rassias stability of functional equations (see, e.g., [HIR98,
Ju01]). The concept of stability for a functional equation arises when we re-
place the functional equation by an inequality which acts as a perturbation of
the equation. Thus, the stability question of functional equations is how do the
solutions of the inequality differ from those of the given functional equation?

Although there are numerous publications for different types of equations,
there are very few results on the study of these kinds of stabilities for integral
equations (cf. [CaRa09] and [Ju07]). In this chapter we propose both a Hyers–
Ulam and a Hyers–Ulam–Rassias stability study for the delay Volterra-type
integral equations [Bu83, Co88, GLS90, LaRa95] of the form

y(x) =
∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ (−∞ < a ≤ x ≤ b < +∞), (9.1)

where a, b, and c are fixed real numbers such that a < b and c ∈ (a, b),
f : [a, b]× [a, b]×C×C → C is a continuous function, and α : [a, b] → [a, b] is
a continuous delay function which therefore fulfills α(x) ≤ x, for all x ∈ [a, b].

We would like to recall that the kinds of stability which we are studying

when Hyers [Hy41] proved the following result by answering a problem of
Ulam affirmatively; cf. [Ul60] and [Ul74]): Let S1 and S2 be two (real) Banach
spaces and assume that a mapping h : S1 → S2 satisfies the inequality

‖h(x+ y)− h(x)− h(y)‖ ≤ ε (x, y ∈ S1) (9.2)

for some nonnegative ε. Then there is a (unique) additive mapping A : S1→S2
such that

‖A(x)− h(x)‖ ≤ ε (x ∈ S1)

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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here (for the above integral equation) appeared for the first time in 1941

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_9,
C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 
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holds. In addition, it was also proved in [Hy41] thatA(x) = limn→∞ h(2nx)/2n

(x ∈ S1).
The last result is nowadays called the Hyers–Ulam stability theorem (of the

additive Cauchy equation f(x + y) = f(x) + f(y)). Since Hyers’s result, nu-
merous papers on the subject have been published, extending and generalizing
Ulam’s problem and Hyers’s theorem in various directions. One of these new
directions was introduced by Th. M. Rassias [Ra7] by considering unbounded
right-hand sides in (9.2) which depend on certain functions of x and y (instead
of considering only bounded Cauchy differences f(x+ y)− f(x)− f(y) as in
the Hyers case).

In this chapter, the formal definitions of the above-mentioned two types
of stability for the case of the equation (9.1) can be defined as follows. If for
each function y satisfying∣∣∣∣y(x)− ∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ
∣∣∣∣ ≤ σ(x)

(where σ is a nonnegative function), there is a solution y0 of the Volterra
integral equation (9.1) and a constant C1 > 0 independent of y and y0 such
that

|y(x)− y0(x)| ≤ C1 σ(x),

for all x, then we say that the integral equation (9.1) has the Hyers–Ulam–
Rassias stability. In the case where σ takes the form of a constant function,
we say that the integral equation (9.1) has the Hyers–Ulam stability.

The interested reader can find further details about Hyers–Ulam stability
of functional equations in the extensive survey [Fo95].

9.2 The Hyers–Ulam–Rassias Stability of the Volterra
Integral Equation with Delay

This section is devoted to studying conditions under which the Volterra inte-
gral equation with delay (9.1) admits the Hyers–Ulam–Rassias stability.

Banach’s fixed point theorem will be one of the main ideas upon which such
properties will be obtained. Here, we will use this theorem in a framework of
a generalized complete metric space setting (Y, dY ). We recall that a function
dY : Y × Y → [0,+∞] is called a generalized metric on Y if and only if dY
satisfies the following three properties:

(i) dY (x, y) = 0 if and only if x = y;
(ii) dY (x, y) = dY (y, x) for all x, y ∈ Y ;
(iii) dY (x, z) ≤ dY (x, y) + dY (y, z) for all x, y, z ∈ Y.

Having a generalized complete metric space (Y, dY ), we will denote by Con(Y )
the set of (strict) contraction operators on the space Y , i.e.,
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Con(Y ) := {T : Y → Y | dY (Ty1, T y2) ≤ cT dY (y1, y2),
for all y1, y2 ∈ Y and for some cT ∈ [0, 1)}.

Theorem 1 (Banach). Let (Y, dY ) be a generalized complete metric space
and consider T ∈ Con(Y ) having a Lipschitz constant cT < 1. If there is a
nonnegative integer k such that d(T k+1y, T ky) <∞ for some y ∈ Y , then the
following propositions hold true:

(i) the sequence (Tny)n∈N
converges to a fixed point y∗ of T ;

(ii) y∗ is the unique fixed point of T in

Y ∗ = {z ∈ Y | d(T ky, z) <∞};

(iii) if z ∈ Y ∗, then

d(z, y∗) ≤ 1
1− cT

d(Tz, z).

Proposition (iii) in the last result is referred to as the collage theorem in
the fractals literature.

9.2.1 The Compact Interval Case

We now have the instruments to present sufficient conditions for the Hyers–
Ulam–Rassias stability of the Volterra integral equation with delay (9.1),
where x ∈ [a, b] for some fixed real numbers a and b.

Theorem 2. Let C and L be positive constants with 0 < CL < 1 and assume
that α : [a, b] → [a, b] is a continuous function such that

α(x) ≤ x, for all x ∈ [a, b]

and f : [a, b]× [a, b]×C×C → C is a continuous function which additionally
satisfies the Lipschitz condition

|f(x, τ, y1(τ), y1(α(τ)))− f(x, τ, y2(τ), y2(α(τ)))| ≤ L|y1 − y2| (9.3)

for any x, τ ∈ [a, b] and all y1, y2 ∈ C.
If a continuous function y : [a, b] → C satisfies∣∣∣∣y(x)− ∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ
∣∣∣∣ ≤ ϕ(x) (9.4)

for all x ∈ [a, b] and for some c ∈ (a, b), where ϕ : [a, b] → (0,∞) is a
continuous function with ∣∣∣∣∫ x

c

ϕ(τ) dτ
∣∣∣∣ ≤ Cϕ(x) (9.5)
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for each x ∈ [a, b], then there is a unique continuous function y0 : [a, b] → C

such that

y0(x) =
∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ (9.6)

|y(x)− y0(x)| ≤
1

1− CLϕ(x) (9.7)

for all x ∈ [a, b].

Proof. We will consider the space of continuous functions

X = {g : [a, b] → C | g is continuous} (9.8)

endowed with the generalized metric defined by

d(g, h) = inf{C ∈ [0,∞] | |g(x)− h(x)| ≤ Cϕ(x) , for all x ∈ [a, b]}.

It is known that (X, d) is a complete generalized metric space (cf., e.g., [Ju07]).
We will consider the following operator T : X → X, defined by

(Tg)(x) =
∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ

for all g ∈ X and x ∈ [a, b]. Thus, due to the fact that f is a continuous
function, it follows that Tg is also continuous and this ensures that T is a
well-defined operator. Indeed,

|(Tg)(x)− (Tg)(x0)|

=
∣∣∣∣∫ x

c

f(x, τ, g(τ), g(α(τ))) dτ −
∫ x0

c

f(x0, τ, g(τ), g(α(τ))) dτ
∣∣∣∣

=
∣∣∣∣∫ x

c

f(x, τ, g(τ), g(α(τ))) dτ −
∫ x

c

f(x0, τ, g(τ), g(α(τ))) dτ

+
∫ x

c

f(x0, τ, g(τ), g(α(τ))) dτ −
∫ x0

c

f(x0, τ, g(τ), g(α(τ))) dτ
∣∣∣∣

≤
∣∣∣∣∫ x

c

f(x, τ, g(τ), g(α(τ))) dτ −
∫ x

c

f(x0, τ, g(τ), g(α(τ))) dτ
∣∣∣∣

+
∣∣∣∣∫ x

c

f(x0, τ, g(τ), g(α(τ))) dτ −
∫ x0

c

f(x0, τ, g(τ), g(α(τ))) dτ
∣∣∣∣

≤
∫ x

c

|f(x, τ, g(τ), g(α(τ)))− f(x0, τ, g(τ), g(α(τ)))| dτ

+
∣∣∣∣∫ x

x0

f(x0, τ, g(τ), g(α(τ))) dτ
∣∣∣∣ x→x0−→ 0.

The main reason to introduce the operator T is to make the application
of Theorem 1 possible, and so let us now verify that T is strictly contractive
on X. For any g, h ∈ X, let us consider Cgh ∈ [0,∞] such that
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|g(x)− h(x)| ≤ Cghϕ(x) (9.9)

for any x ∈ [a, b] (note that this is always possible due to the definition of
(X, d)). From the definition of T and (9.3), (9.5), and (9.9), it follows that

|(Tg)(x)− (Th)(x)| =
∣∣∣∣∫ x

c

[f(x, τ, g(τ), g(α(τ)))− f(x, τ, h(τ), h(α(τ)))] dτ
∣∣∣∣

≤
∣∣∣∣∫ x

c

|f(x, τ, g(τ), g(α(τ)))− f(x, τ, h(τ), h(α(τ)))| dτ
∣∣∣∣

≤ L
∣∣∣∣∫ x

c

|g(τ)− h(τ)| dτ
∣∣∣∣

≤ LCgh
∣∣∣∣∫ x

c

ϕ(τ) dτ
∣∣∣∣

≤ LCghC ϕ(x)

for all x ∈ [a, b]. Therefore,

d(Tg, Th) ≤ LCghC.

This allows us to conclude that d(Tg, Th) ≤ LCd(g, h) for any g, h ∈ X, and
since CL ∈ (0, 1) the (strictly) contraction property is verified.

Let us take g0 ∈ X. From the continuous property of g0 and Tg0, it follows
that there is a constant C1 ∈ (0,∞) such that

|(Tg0)(x)− g0(x)| =
∣∣∣∣∫ x

c

f(x, τ, g0(τ), g0(α(τ)) )dτ − g0(x)
∣∣∣∣

≤ C1ϕ(x)

for all x ∈ [a, b]. Note that this occurs also because f and g0 are bounded
on [a, b] and ϕ is a positive function. Therefore, from the definition of the
generalized metric d, it follows that

d(Tg0, g0) <∞. (9.10)

In this way, we are ready to use Theorem 1 and so to conclude that there is
a continuous function y0 : [a, b] → C such that

Tng0
n→∞−→ y0 in (X, d),

and Ty0 = y0.
For any g0 with the property (9.10) it follows that X can be rewritten in

the following new form:

X = {g ∈ X | d(g0, g) <∞}

(cf. [Ju07]). Therefore, once again Theorem 1 ensures that y0 is the unique
continuous function with the property (9.6).
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Now, from (9.4) it follows that d(y, Ty) ≤ 1, and so the collage theorem
leads to

d(y, y0) ≤
1

1− CL d(Ty, y) ≤
1

1− CL.

Thus, the last inequality together with the definition of the generalized metric
d lead to inequality (9.7).

9.2.2 The Infinite Interval Case

In this subsection we will consider a modification of the Volterra integral
equation with delay (9.1) to the situation of infinite intervals instead of the
compact case presented in the Introduction. Here the case x ∈ R (instead of
the above case of x ∈ [a, b] with fixed real numbers a and b) will be dealt with
in detail. The corresponding cases of x ∈ [a,+∞) and x ∈ (−∞, b] also hold
true by applying obvious changes in the strategy below.

The main goal here is also to obtain the Hyers–Ulam–Rassias stability of
such (different) corresponding integral equations. In view of this, our strategy
will be based on the application of a recurrence procedure due to the already-
obtained result for the above-studied compact interval case.

Theorem 3. Let C and L be positive constants with 0 < CL < 1 and assume
that

f : R× R× C× C → C

is a continuous function which additionally satisfies the Lipschitz condi-
tion (9.3), for any x, τ ∈ R and all y1, y2 ∈ C, and α : R → R is also a
continuous function such that

α(x) ≤ x, for all x ∈ R.

If a continuous function y : R → C satisfies (9.4), for all x ∈ R and for
some c ∈ R, where ϕ : R → (0,∞) is a continuous function satisfying (9.5),
for each x ∈ R, then there is a unique continuous function

y0 : R → C

which satisfies (9.6) and (9.7) for all x ∈ R.

Proof. We start by proving that y0 is a continuous function. For any n ∈ N,
let us define In = [c − n, c + n]. According to Theorem 2, there is a unique
continuous function y0,n : In → C such that

y0,n(x) =
∫ x

c

f(x, τ, y0,n(τ), y0,n(α(τ))) dτ (9.11)

|y(x)− y0,n(x)| ≤
1

1− CLϕ(x) (9.12)
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for all x ∈ In, where α is defined on In. The uniqueness of y0,n implies that if
x ∈ In then

y0,n(x) = y0,n+1(x) = y0,n+2(x) = · · · . (9.13)

For any x ∈ R, let us define n(x) ∈ N as

n(x) = min{n ∈ N | x ∈ In}.

We also define a function y0 : R → C by

y0(x) = y0,n(x)(x),

and we can say that y0 is continuous. Indeed, for any x1 ∈ R, let n1 = n(x1).
Thus, x1 belongs to the interior of In1+1 and an ε > 0 exists such that y0(x) =
y0,n1+1(x) for all x ∈ (x1 − ε, x1 + ε). By Theorem 2, y0,n1+1 is continuous at
x1, so it is y0.

In the next step, we will show that y0 satisfies (9.6) and (9.7) for all x ∈ R.
Let us choose n(x) for an arbitrary x ∈ R. Then x ∈ In(x) and from (9.11) it
follows that

y0(x) = y0,n(x)(x)

=
∫ x

c

f(x, τ, y0,n(x)(τ), y0,n(x)(α(τ))) dτ

=
∫ x

c

f(x, τ, y0(τ), y0(α(τ))) dτ

(where the last equality holds true because n(τ) ≤ n(x) and n(α(τ)) ≤ n(x),
for any τ ∈ In(x)), and it follows from (9.13) that

y0(τ) = y0,n(τ)(τ) = y0,n(x)(τ)

and

y0(α(τ)) = y0,n(τ)(α(τ)) = y0,n(x)(α(τ)).

Moreover, (9.12) implies that

|y(x)− y0(x)| =
∣∣y(x)− y0,n(x)(x)

∣∣ ≤ 1
1− CLϕ(x), for all x ∈ R.

We will now prove that y0 is unique. Suppose that y1 is another continuous
function which satisfies (9.6) and (9.7), for all x ∈ R. Since both restrictions
y0|In(x)

= y0,n(x) and y1|In(x)
satisfy (9.6) and (9.7) for all x ∈ In(x), the

uniqueness of y0|In(x)
= y0,n(x) implies that

y0(x) = y0|In(x)(x) = y1|In(x)(x) = y1(x).
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9.3 The Hyers–Ulam Stability of the Volterra Integral
Equation with Delay

We would now like to consider certain stronger assumptions in the conditions
associated with the Volterra integral equation with delay (9.1) (for the finite
interval case) such that somehow the Hyers–Ulam stability will be obtained.
All this is gathered in the next final result.

Theorem 4. Let K = b−a and consider L to be a positive constant such that
0 < KL < 1. Assume in addition that

α : [a, b] → [a, b]

is a continuous function such that α(x) ≤ x, for all x ∈ [a, b], and

f : [a, b]× [a, b]× C× C → C

is a continuous function which fulfills the Lipschitz condition

|f(x, τ, y1(τ), y1(α(τ)))− f(x, τ, y2(τ), y2(α(τ)))| ≤ L|y1 − y2| (9.14)

for any x, τ ∈ [a, b] and all y1, y2 ∈ C.
If for some c ∈ (a, b) a continuous function y : [a, b] → C satisfies∣∣∣∣y(x)− ∫ x

c

f(x, τ, y(τ), y(α(τ))) dτ
∣∣∣∣ ≤ θ

for each x ∈ [a, b] and some θ ≥ 0, then a unique continuous function
y0 : [a, b] → C exists such that

y0(x) =
∫ x

c

f(x, τ, y0(τ), y0(α(τ))) dτ (9.15)

and

|y(x)− y0(x)| ≤
θ

1−KL

for all x ∈ [a, b].

Proof. We will continue working with the space of continuous functions pre-
sented in (9.8) and endowed with the generalized metric defined by

d(g, h) = inf{C ∈ [0,∞] | |g(x)− h(x)| ≤ C , for all x ∈ [a, b]},

and consider also the operator T : X → X defined by

(Tg)(x) =
∫ x

c

f(x, τ, g(τ), g(α(τ))) dτ
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for all g ∈ X and x ∈ [a, b]. We recall that for any continuous function g, the
element Tg is also continuous.

Let us now verify that T ∈ Con(X). For any g, h ∈ X, let us consider
Cgh ∈ [0,∞] such that

|g(x)− h(x)| ≤ Cgh (9.16)

for any x ∈ [a, b]. From the definition of T , (9.14), and (9.16), it follows that

|(Tg)(x)− (Th)(x)| =
∣∣∣∣∫ x

c

[f(x, τ, g(τ), g(α(τ)))− f(x, τ, h(τ), h(α(τ)))] dτ
∣∣∣∣

≤
∣∣∣∣∫ x

c

|f(x, τ, g(τ), g(α(τ)))− f(x, τ, h(τ), h(α(τ)))| dτ
∣∣∣∣

≤ L
∣∣∣∣∫ x

c

|g(τ)− h(τ)| dτ
∣∣∣∣

≤ LCghK

for all x ∈ [a, b]. Thus, d(Tg, Th) ≤ LCghK. This allows us to conclude that
d(Tg, Th) ≤ LKd(g, h) for any g, h ∈ X, and since KL ∈ (0, 1) the (strict)
contraction property is verified.

In an analogous way to the proof of Theorem 2, we can choose g0 ∈ X
with

d(Tg0, g0) <∞. (9.17)

Therefore, we are in the condition of using Theorem 1 and thus conclude that
there is a continuous function y0 : [a, b] → C such that

Tng0
n→∞−→ y0 in (X, d),

and Ty0 = y0.
For any g0 with the property (9.17) it follows that X can be rewritten in

the following new form:

X = {g ∈ X | d(g0, g) <∞}.

Thus, once again Theorem 1 ensures that y0 is the unique continuous function
with the property (9.15). Furthermore, the collage theorem (cf. Theorem 1)
yields

|y(x)− y0(x)| ≤
θ

1−KL,

for all x ∈ [a, b].
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10.1 Introduction

The main goal of this chapter is to obtain a Fredholm index formula for a class
of Wiener–Hopf plus and minus Hankel operators which contain a certain sym-
metry between their Fourier symbols. It is relevant to mention that Wiener–
Hopf plus and minus Hankel operators (with and without symmetries) appear
in several different kinds of applications [CST04]; therefore, further knowl-
edge about their Fredholm property and index is relevant for both theoretical
and applied reasons. In view of this, several works concerning these classes
of operators have appeared recently [BoCa06, BoCa, CaSi09, NoCa07]. The
Fourier matrix symbols considered in this chapter belong to the C∗-algebra

conditions that ensure the Fredholm property of the operators under study
will also be obtained.

Let us now define in exact terms the operators which we will be working
with. We will be concerned with matrix integral operators which have the
following diagonal form:

DΥ = diag
[
W
Υ̃

+HΥ ,WΥ̃
−HΥ

]
: [L2

+(R)]2N → [L2(R+)]2N , (10.1)

where in the main diagonal we find matrix Wiener–Hopf plus and minus Han-
kel operators

W
Υ̃
±HΥ : [L2

+(R)]N → [L2(R+)]N (N ∈ N), (10.2)

where W
Υ̃

and HΥ are matrix Wiener–Hopf and Hankel operators defined
by W

Υ̃
= r+F−1Υ̃ · F and HΥ = r+F−1Υ · FJ , respectively. In addition,

F denotes the Fourier transformation, ϕ̃(x) = ϕ(−x), x ∈ R, and J is the
reflection operator given by the rule Jϕ = ϕ̃. We use [L2

+(R)]N to denote
the subspace of [L2(R)]N formed by all the matrix functions supported on
the closure of R+ = (0,+∞), r+ represents the operator of restriction from

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010

 95

of piecewise almost periodic functions. Besides the Fredholm index formula,

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_10,
C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 



www.manaraa.com

96 L.P. Castro and A.S. Silva

[L2
+(R)]N into [L2(R+)]N , and Υ̃ , Υ are called the Fourier N × N matrix

symbols (which will belong to the above-mentioned C∗-algebra of piecewise
almost periodic elements).

10.2 Auxiliary Material

In view of defining the piecewise almost periodic functions, we will first con-
sider the algebra of almost periodic functions.

The smallest closed subalgebra of L∞(R) that contains all the functions
eλ (λ ∈ R), where eλ(x) = eiλx, x ∈ R, is denoted by AP and called the
algebra of almost periodic functions: AP := algL∞(R){eλ : λ ∈ R}. In addition,
we will also use AP+ := algL∞(R){eλ : λ ≥ 0}, and AP− := algL∞(R){eλ : λ ≤
0}.

We will review here some of the properties of the almost periodic func-
tions (which we will use further on). Let A ⊂ (0,∞) be an unbounded
set and let {Iα}α∈A = {(xα, yα)}α∈A be a family of intervals Iα ⊂ R

such that |Iα| = yα − xα → ∞ as α → ∞. If ϕ ∈ AP , then the limit
M(ϕ) := limα→∞

1
|Iα|
∫
Iα
ϕ(x) dx exists, is finite, and is independent of the

particular choice of the family {Iα} (cf., e.g., [BKS02], Proposition 2.22). The
number M(ϕ) is called the Bohr mean value or simply the mean value of ϕ.
In the matrix case the mean value is defined entry-wise.

Let C(Ṙ) (with Ṙ = R ∪ {∞}) denote the set of all (bounded and) con-
tinuous functions ϕ on the real line for which the two limits ϕ(−∞) :=
limx→−∞ ϕ(x), ϕ(+∞) := limx→+∞ ϕ(x) exist and coincide. The common
value of these two limits will be denoted by ϕ(∞). In addition, consider the
C∗-algebra of all bounded piecewise continuous functions on Ṙ denoted by
PC or PC(Ṙ) as being the algebra of all functions ϕ ∈ L∞(R) for which the
one-sided limits ϕ(x0 − 0) = limx→x0−0 ϕ(x), ϕ(x0 + 0) = limx→x0+0 ϕ(x)
exist for each x0 ∈ Ṙ. C(R) := C(R) ∪ PC(Ṙ), where C(R) is the usual set
of continuous functions on the real line. Furthermore, PC0 will represent the
subclass of PC of all piecewise continuous functions ϕ for which ϕ(±∞) = 0.

As mentioned above, we will deal with Fourier symbols from the C∗-algebra
of piecewise almost periodic elements which is defined as follows.

Definition 1. The C∗-algebra PAP of all piecewise almost periodic functions
on R is the smallest closed subalgebra of L∞(R) that contains AP and PC:
PAP = algL∞(R){AP,PC}.

Let us use the notation GB for the group of all invertible elements of
a Banach algebra B. The following proposition is the matrix version of a
corresponding result for the scalar case (cf. [BKS02, Proposition 3.15]).

Proposition 1. (a) If Γ ∈ PAPN×N , then there are uniquely determined
functions Θ�, Θr ∈ APN×N and Γ0 ∈ PCN×N

0 such that
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Γ = (1− u)Θ� + uΘr + Γ0, (10.3)

where u ∈ C(R), u(−∞) = 0, and u(+∞) = 1.
(b) If Γ ∈ GPAPN×N , then there is an invertible semi-almost periodic
element Θ ∈ GSAPN×N and an invertible piecewise continuous element
Ξ ∈ GPCN×N (such that Ξ(−∞) = Ξ(+∞) = IN×N ) which allow the con-
struction of a factorization

Γ = ΘΞ (10.4)

and WΓ = WΘWΞ +K1 = WΞWΘ +K2 with compact operators K1, K2.
The almost periodic representatives of Θ are the functions Θ� and Θr of

part (a).

We will now recall a factorization concept within AP which we will use
several times in this chapter.

Definition 2. A matrix function Γ ∈ GAPN×N is said to admit a right AP
factorization if it can be represented in the form

Γ (x) = Γ−(x)D(x)Γ+(x) (10.5)

for all x ∈ R, with Γ− ∈ GAPN×N
− , Γ+ ∈ GAPN×N

+ , and where D is a diago-
nal matrix of the form D(x) = diag[eixλ1 , . . . , eixλN ], λj ∈ R. The numbers λj
are called the right AP indices of the factorization. A right AP factorization
with D = IN×N is referred to as a canonical right AP factorization.

It is said that a matrix function Γ ∈ GAPN×N admits a left AP factor-
ization if instead of (10.5) we have Γ (x) = Γ+(x)D(x)Γ−(x) for all x ∈ R

and Γ± and D having the same property as above.

From the above definition we can observe that if an invertible almost
periodic matrix function Γ admits a right AP factorization, then Γ̃ admits
a left AP factorization, and Γ−1 also admits a left AP factorization. The
vector containing the right AP indices will be denoted by k(Γ ), i.e., in the
above case k(Γ ) := (λ1, . . . , λN ). If we consider the case with equal right AP
indices (k(Γ ) := (λ1, λ1, . . . , λ1)), then the matrix d(Γ ) := M(Γ−)M(Γ+)
is independent of the particular choice of the right AP factorization. In this
case, this matrix d(Γ ) is called the geometric mean of Γ .

In order to relate operators and to transfer certain operator properties
between the related operators, we will also be using the notion of equivalence
after extension for bounded linear operators.

Definition 3. Consider two bounded linear operators T : X1 → X2 and S :
Y1 → Y2, acting between Banach spaces. We say that T is equivalent after
extension to S if there are Banach spaces Z1 and Z2 and invertible bounded
linear operators E and F such that

diag[T, IZ1 ] = E diag[S, IZ2 ] F, (10.6)

where IZ1 and IZ2 represent the identity operators in Z1 and Z2, respectively.
This relation between T and S will be denoted by T ∗∼ S.
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Remark 1. If T is equivalent after extension with S, then T and S have the
same Fredholm regularity properties, i.e., one of these operators is invertible,
one-sided invertible, Fredholm, semi-Fredholm, one-sided regularizable, gen-
eralized invertible, or normally solvable, if and only if the other enjoys that
property.

Proposition 2. Let Υ ∈ G[L∞(R)]N×N . Then DΥ is equivalent after exten-
sion to the Wiener–Hopf operator W

Υ−1Υ̃
: [L2

+(R)]N → [L2(R+)]N with
Fourier symbol Υ−1Υ̃ :

DΥ
∗∼ W

Υ−1Υ̃
. (10.7)

Proof. We may apply Theorem 2.1 of [CaSi09] to our present case and there-
fore directly conclude that DΥ is equivalent after extension to the Wiener–
Hopf operator WΨ : [L2

+(R)]2N → [L2(R+)]2N with Fourier symbol:

Ψ =

[
0 −IN

Υ−1Υ̃ Υ−1

]
.

We now observe that this Wiener–Hopf operator WΨ is equivalent after ex-
tension with the operator W

Υ−1Υ̃
. In fact, the following holds:

WΨ = r+F−1

[
0 −IN
IN Υ−1

]
F#0r+F−1

[
Υ−1Υ̃ 0

0 IN

]
F .

This, together with the equivalence after extension relation between DΥ and
WΨ (and also considering the transitivity of the equivalence after extension
relation), leads us to the operator relation (10.7).

10.3 The Fredholm Property

We start by recalling a Fredholm characterization for Wiener–Hopf operators
with PAP matrix Fourier symbols having lateral almost periodic represen-
tatives admitting right AP factorizations. This result will be used to find
sufficient conditions to ensure the Fredholm property of the operators under
study.

Theorem 1 (cf., e.g., [BKS02, Theorem 3.16]). Let Γ ∈ PAPN×N . If
Γ /∈ G[PAP ]N×N , then WΓ is not semi-Fredholm. Assume now that Γ ∈
GPAP and Γ� and Γr admit a right AP factorization. Then the Wiener–Hopf
operator WΓ is Fredholm if and only if:

(i) the almost periodic representatives Γ� and Γr admit canonical right AP
factorizations, i.e., with k(Γ�) = k(Γr) = (0, . . . , 0);

(ii) sp(d−1(Γr)d(Γ�)) ∩ (−∞, 0] = ∅,
(iii) sp(Γ−1(x− 0)Γ (x+ 0)) ∩ (−∞, 0] = ∅
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for all x ∈ R.

From Proposition 1, if Υ ∈ PAPN×N then this matrix function admits
the following representation:

Υ = (1− u)Υ� + uΥr + Υ0 (10.8)

(with Υ0 ∈ [PC0]N×N ) and so

Υ−1Υ̃ = [(1− u)Υ� + uΥr + Υ0]−1[(1− ũ)Υ̃� + ũΥ̃r + Υ̃0]. (10.9)

Therefore, from (10.9), we obtain that

(Υ−1Υ̃)� = Υ−1
� Υ̃r, (Υ−1Υ̃)r = Υ−1

r Υ̃�. (10.10)

These representations are important not only in the following result but
also in the final result where a Fredholm index formula is obtained.

Theorem 2. Let Υ ∈ GPAPN×N such that Υ−1
� Υ̃r admits a right AP factor-

ization. In this case, the operator DΥ is Fredholm if and only if the following
three conditions are satisfied:

(l) Υ−1
� Υ̃r admits a canonical right AP factorization;

(ll) sp[d(Υ−1
� Υ̃r)] ∩ iR = ∅;

(lll) sp[Υ−1(−x+ 0)Υ (x− 0)Υ−1(x+ 0)Υ (−x− 0)] ∩ (−∞, 0] = ∅.

Proof. If Υ ∈ G[PAP ]N×N then Υ−1Υ̃ is also invertible in PAPN×N .
The Fredholm property of DΥ implies that the operator W

Υ−1Υ̃
is also a

Fredholm operator (cf. (10.7)). Employing Theorem 1 we obtain that (Υ−1Υ̃ )�
and (Υ−1Υ̃ )r admit canonical right AP factorizations,

sp[d−1((Υ−1Υ̃ )r)d((Υ−1Υ̃ )�)] ∩ (−∞, 0] = ∅ (10.11)

and
sp[(Υ−1Υ̃ )−1(x− 0)(Υ−1Υ̃ )(x+ 0)] ∩ (−∞, 0] = ∅. (10.12)

Due to (10.10) we conclude that Υ−1
� Υ̃r admits a canonical right AP factor-

ization and we derive from (10.11) that

sp[d−1(Υ−1
r Υ̃�)d(Υ−1

� Υ̃r)] ∩ (−∞, 0] = ∅. (10.13)

A canonical right AP factorization of Υ−1
� Υ̃r can be normalized into

Υ−1
� Υ̃r = Θ−ΛΘ+, (10.14)

where Θ± have the same factorization properties as the original lateral factors
of the canonical factorization but withM(Θ±) = I, and where Λ := d(Υ−1

� Υ̃r).
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Thus, (10.14) allows Υ−1
r Υ̃� = ( ˜

Υ−1
� Υ̃r)−1 = Θ̃−1

+ Λ−1Θ̃−1
− , which shows that

d(Υ−1
r Υ̃�) = Λ−1, and therefore (10.13) turns out to be equivalent to sp[Λ2]∩

(−∞, 0] = ∅. From the eigenvalue definition we therefore have the result
sp[Λ] ∩ iR = ∅, which proves condition (ll).

In addition, from (10.12) we derive that

sp[Υ̃−1(x− 0)Υ (x− 0)Υ−1(x+ 0)Υ̃ (x+ 0)] ∩ (−∞, 0] = ∅,

which is equivalent to

sp[Υ−1(−x+ 0)Υ (x− 0)Υ−1(x+ 0)Υ (−x− 0)] ∩ (−∞, 0] = ∅.

Let us now assume that conditions (l)–(lll) hold and prove that DΥ is
a Fredholm operator. Since Υ−1

� Υ̃r = (Υ−1Υ̃ )� admits a canonical right AP

factorization, then (˜
Υ−1Υ̃ )� = Υ̃−1

� Υr admits a canonical left AP factoriza-

tion and [(˜
Υ−1Υ̃ )�]−1 = Υ−1

r Υ̃� admits a canonical right AP factorization.
These last two canonical right AP factorizations and condition (ll) imply
that sp[d−1((Υ−1Υ̃ )r)d((Υ−1Υ̃ )�)] ∩ (−∞, 0] = sp[d−1(Υ−1

r Υ̃�)d(Υ−1
� Υ̃r)] ∩

(−∞, 0] = ∅.
Condition (lll) allows us to conclude that

sp[(Υ−1Υ̃ )−1(x− 0)(Υ−1Υ̃ )(x+ 0)] ∩ (−∞, 0] = ∅.

All these facts together and Theorem 1 show thatW
Υ−1Υ̃

is a Fredholm opera-
tor. Using the equivalence after extension relation presented in Proposition 2,
we obtain that DΥ is a Fredholm operator.

10.4 The Fredholm Index Formula

In this section we will concentrate on obtaining a Fredholm index formula
for DΥ , i.e., for the sum of Wiener–Hopf plus and minus Hankel operators
W
Υ̃
± HΥ with piecewise almost periodic Fourier symbols such that Υ−1

� Υ̃r
admits a right AP factorization. For that purpose, taking into account that
PAP = SAP + PC0, we will first recall some known properties of Wiener–
Hopf plus Hankel operators with symbols in SAP and with symbols in PC.
Within this context, let us assume that W

Υ̃
+ HΥ and W

Υ̃
− HΥ have the

Fredholm property.
Let GSAP0,0 denote the set of all functions ϕ ∈ GSAP for which k(ϕ�) =

k(ϕr) = 0. To define the Cauchy index of ϕ ∈ GSAP0,0 we need the next
lemma.

Lemma 1 ([BKS02, Lemma 3.12]). Let A ⊂ (0,∞) be an unbounded set
and let {Iα}α∈A = {(xα, yα)}α∈A be a family of intervals such that xα ≥ 0
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and |Iα| = yα − xα → ∞, as α → ∞. If ϕ ∈ GSAP0,0 and argϕ is any
continuous argument of ϕ, then the limit

1
2π

lim
α→∞

1
|Iα|

∫
Iα

((argϕ)(x)− (argϕ)(−x))dx (10.15)

exists, is finite, and is independent of the particular choices of {(xα, yα)}α∈A
and argϕ.

The limit (10.15) is denoted by ind ϕ and is usually called the Cauchy
index of ϕ.

The following theorem provides a formula for the Fredholm index of matrix
Wiener–Hopf operators with SAP Fourier symbols.

Theorem 3 ([BKS02, Theorem 10.12]). Let Γ ∈ SAPN×N . If the almost
periodic representatives Γ�, Γr admit right AP factorizations, and if WΓ is a
Fredholm operator, then

Ind WΓ = −ind[detΓ ]−
N∑
k=1

(1
2
−
{1

2
− 1

2π
arg ξk

})
, (10.16)

where ξ1, . . . , ξN ∈ C\(−∞, 0] are the eigenvalues of the matrix d−1(Γr)d(Γ�)
and {·} stands for the fractional part of a real number. Additionally, when
choosing arg ξk in (−π, π), we have

Ind WΓ = −ind[detΓ ]− 1
2π

N∑
k=1

arg ξk.

Let us now consider Γ ∈ PCN×N . Recall the auxiliary extension of Γ
defined by

Γ#(x, μ) := (1− μ)Γ (x− 0) + μΓ (x+ 0), (x, μ) ∈ Ṙ× [0, 1]

and consider detΓ# : Ṙ× [0, 1] → C. The set

C := {detΓ#(x, μ) ∈ C : x ∈ R, μ ∈ [0, 1]}

is a closed continuous curve obtained from Γ by joining detΓ#(x − 0) to
detΓ#(x + 0) through a line segment at the discontinuity points of Γ . If
0 �∈ C, then the winding number of C with respect to the origin (denoted in
this case by wind[detΓ#]) is defined as the counter-clockwise circuits around
the origin performed by the image of detΓ#. Suppose detΓ#(x, μ) �= 0 for all
(x, μ) ∈ R× [0, 1] which implies that Γ (x− 0) and Γ (x+ 0) are invertible for
all x ∈ Ṙ. Moreover, assume that the set ΔΓ := {x ∈ Ṙ : Γ (x−0) �= Γ (x+0)}
is finite. For a connected component # of Ṙ\ΔΓ we define ind�Γ as (2π)−1

times the increment of any continuous argument of detΓ on #. Taking into
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account the possible jump at infinity, the winding number of C can be given
by:

wind[detΓ#] = ind[detΓ#] +
N∑
k=1

(1
2
−
{1

2
− 1

2π
argξk(∞)

})
, (10.17)

where

ind[detΓ#] =
∑
�

ind�[detΓ ] +
∑
x∈ΔΓ

N∑
k=1

(1
2
−
{1

2
− 1

2π
argξk(x)

})
, (10.18)

with ξ1(x), . . . , ξN (x) being the eigenvalues of Γ−1(x−0)Γ (x+0) for x ∈ ΔΓ
and {·} denoting the fractional part of a real number.

Theorem 4 (cf., e.g., [BKS02, Theorem 5.10]). Let Γ ∈ PCN×N . If WΓ

is a Fredholm operator and Γ has at most finitely many jumps, then

IndWΓ = −wind(detΓ#)

where wind(detΓ#) is given by (10.17)–(10.18). Choosing the arguments in
(−π, π), we also have

IndWΓ = −ind[det Γ#]− 1
2π

N∑
k=1

argξk(∞)

Now, we are in conditions to conclude a formula for the Fredholm index
of matrix Wiener–Hopf operators with PAP Fourier symbols.

Let Γ ∈ PAPN×N . Then Γ = ΘΞ (with Θ ∈ GSAPN×N , Ξ ∈ GPCN×N

and Ξ(±∞) = IN×N ) such that

WΓ = WΘWΞ +K (10.19)

with K being a compact operator (cf. Proposition 1). Assume that WΓ is a
Fredholm operator. From (10.19) we derive that

IndWΓ = IndWΘ + IndWΞ

Using now formulas (10.16), (10.17), and (10.18) and taking into account that
Ξ does not have a jump at infinity, we can conclude the following theorem:

Theorem 5 (cf. [BoCa, Proposition 6.3]). Let Γ ∈ GPAPN×N . If the
almost periodic representatives Γ�, Γr admit right AP factorizations, and if
WΓ is a Fredholm operator, then

Ind WΓ = −
∑
�

ind�[det Ξ]− ind[detΘ]

−
∑
x∈ΔΓ

N∑
k=1

(1
2
−
{1

2
− 1

2π
arg ξk(x)

})
−

N∑
k=1

(1
2
−
{1

2
− 1

2π
arg ηk

})
, (10.20)
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where ξk(x) are the eigenvalues of the matrix function Γ−1(x−0)Γ (x+0) and
ηk are the eigenvalues of the matrix d−1(Γr)d(Γ�). Choosing both arguments
in (−π, π), (10.20) simplifies to

IndWΓ = −
∑
�

ind�[det Ξ]−ind[detΘ]− 1
2π

∑
x∈ΔΓ

N∑
k=1

arg ξk(x)−
1
2π

N∑
k=1

arg ηk.

(10.21)

We have now a full machinery to obtain a Fredholm index formula for the
operator DΥ (cf. (10.1)).

Theorem 6. Let Υ ∈ GPAPN×N such that Υ−1
� Υ̃r admits a right AP factor-

ization. If W
Υ̃
±HΥ are Fredholm operators, then

Ind[W
Υ̃

+HΥ ] + Ind[W
Υ̃
−HΥ ] = −

∑
�

ind�[detΞ]− ind[det Θ]

−
∑

x∈Δ
Υ −1Υ̃

N∑
k=1

(1
2
−
{1

2
− 1

2π
arg ξk(x)

})
−

N∑
k=1

(1
2
−
{1

2
− 1
π

arg δk
})
, (10.22)

where Υ−1Υ̃ = ΘΞ is a corresponding factorization in the sense of (10.4) for
the invertible matrix-valued PAP function Υ−1Υ̃ , ξk(x) are the eigenvalues
of the matrix function Υ−1(−x+ 0)Υ (x− 0)Υ−1(x+ 0)Υ (−x− 0), δk ∈ C\iR
are the eigenvalues of the matrix d(Υ−1

� Υ̃r) and

Δ
Υ−1Υ̃

=
{
x ∈ Ṙ :

(
Υ−1Υ̃

)
(x− 0) �=

(
Υ−1Υ̃

)
(x+ 0)

}
.

Moreover, formula (10.22) simplifies into the following one:

Ind[W
Υ̃

+HΥ ] + Ind[W
Υ̃
−HΥ ] = −

∑
�

ind�[detΞ]− ind[detΘ]

− 1
2π

∑
x∈Δ

Υ −1Υ̃

N∑
k=1

arg ξk(x)−
1
π

N∑
k=1

arg β(δk) (10.23)

when choosing arg ξk(x) ∈ (−π, π) and

β(δk) =
{

arg(δk) if �e δk > 0
arg(−δk) if �e δk < 0

with the argument in both cases being taken in (−π
2 ,

π
2 ).

Proof. Using the equivalence after extension relation stated in Proposition 2,
we conclude that Ind DΥ = Ind W

Υ−1Υ̃
and consequently, Ind[W

Υ̃
+ HΥ ] +

Ind[W
Υ̃
−HΥ ] = Ind W

Υ−1Υ̃
. Following (10.20), we obtain
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IndW
Υ−1Υ̃

= −
∑
�

ind�[detΞ]− ind[detΘ]

−
∑

x∈Δ
Υ −1Υ̃

N∑
k=1

(1
2
−
{1

2
− 1

2π
argξk(x)

})
−

N∑
k=1

(1
2
−
{1

2
− 1

2π
argζk

})
, (10.24)

where Υ−1Υ̃ = ΘΞ is a corresponding factorization in the sense of (10.3) for
the invertible PAP matrix function Υ−1Υ̃ , ξk(x) are the eigenvalues of the
matrix function Υ−1(−x+0)Υ (x−0)Υ−1(x+0)Υ (−x−0) and ζk ∈ C\(−∞, 0]
are the eigenvalues of the matrix d−1((Υ−1Υ̃ )r)d((Υ−1Υ̃ )�). However, since
we have already proved that d−1((Υ−1Υ̃ )r)d((Υ−1Υ̃ )�) = Λ2, it turns out
that formula (10.24) simplifies into (10.22).

Finally, the simplification into the formula (10.23) occurs as a direct con-
sequence of the above indicated choice of arguments for the eigenvalues.
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11.1 Introduction

The integral equations which are characterized by singular integral operators
with shift appear frequently in a large variety of applied problems (we refer
to [KaSa01, KrLi94] for a general background on these operators and historical
references). Thus, it is of fundamental importance to obtain descriptions of
the invertibility characteristics of these operators. Although some invertibility
criteria are presently known for several classes of singular integral operators
with shift, the corresponding criteria still remain to be achieved for many
others. In addition, among all the classes of singular integral operators with
shifts, the ones with weighted shifts typically reveal extra difficulties.

This chapter is devoted to the analysis of singular integral operators

A = a0IT + b0ST + a1J̃ + b1STJ̃ , (11.1)

with essentially bounded functions a0, b0, a1, b1 and a flip operator J̃ which
contains a backward Carleman shift α (or, more precisely, a weighted back-
ward Carleman shift) in the form (J̃ϕ)(t) = 1

tϕ
( 1
t

)
, t ∈ T, and that is defined

between weighted Lebesgue spaces Lp(T, ρ), 1 < p < ∞, ρ(t) = |t − 1|1−2/p.
The operator IT denotes the identity operator, and ST denotes the Cauchy
singular integral operator along the unit circle T being defined almost every-
where by

(STf)(t) =
1
πi

∫
T

f(τ)
τ − tdτ

(where the integral is understood in the sense of principal value).
Explicit operator equivalence relations will be exhibited between (11.1)

possible to present a new matrix Toeplitz operator that will be preponderant
in determining an invertibility criterion for the initial operators. Due to the
explicit form of the present operator relations, in the case of invertibility, this

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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and singular integral operators without shifts. As a consequence, it will be
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technique allows us to find formulas to the inverse of A. Moreover, due to
the generalized factorization of a bounded measurable matrix-valued function
(and by using the properties of the factors in such a factorization), formulas
for the left-sided and right-sided inverses of the initial operator will also be
obtained. In this sense, this chapter may be viewed as a natural continuation
of [CaRo09]. For other recent works in this direction, see [CaRo08a, CaRo08b,
Ka04].

11.2 Notation and Auxiliary Results

To fix additional notation, let us mention that the weighted Lebesgue space
over G, Lp(G,w), is equipped with the norm ‖f‖p,w := ‖wf‖p , where ‖ · ‖p
denotes the usual norm of Lp(G). In addition, L(X,Y ) will denote the space
of all bounded and linear operators defined from the Banach space X into
the Banach space Y , and in order to shorten the notation we will also use
L(X) := L(X,X).

We recall that two bounded and linear operators T : X1 → X2 and
S : Y1 → Y2, acting between Banach spaces are said to be equivalent [BaTs92,
CaSp98] if there are two boundedly invertible linear operators, E : Y2 → X2
and F : X1 → Y1, such that T = E S F . We will refer to the last formula
as an operator equivalence relation (between T and S). In the particular case
of E = F−1, we say that we have a similarity relation between the operators
T and S. In the sequel of the work we will use the notion of equivalence af-
ter extension relation (cf., e.g., [BaTs92]): the operators T and S are called
equivalent after extension if Banach spaces Z and W exist such that T ⊕ IZ
and S ⊕ IW are equivalent operators.

We also recall that a normally solvable operator T : X → Y (acting
between Banach spaces) is called a Fredholm operator if n(t) := dim kerT <∞
and d(t) := dimX/ImT <∞. The Fredholm index is then defined by IndT :=
n(T )− d(T ).

For two equivalent operators (or equivalent after extension) T and S, it
follows that T is invertible or has the Fredholm property if and only if S is
invertible or has the Fredholm property, respectively.

11.3 Similarity Relations for Singular Integral Operators

In the first part of this section, we will describe the operator relations between
operators of the form (11.1) and corresponding matrix operators without shift
derived in [CaRo09]. This also allows a relation between A and a matrix
Toeplitz operator which will be useful for describing the inverse formulas for
operator A.

A first step in this strategy is to apply the isometric isomorphism B :
Lp(T, ρ) → Lp(R) (with ρ(t) = |t− 1|1−2/p, t ∈ T), defined by
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(Bφ)(x) =
21−1/p

x+ i
φ

(
x− i
x+ i

)
, x ∈ R (11.2)

to operator A in a way such that we will reach the new singular integral
operator:

B = BAB−1 = aIR + bSR + cWR + dSRWR : Lp(R) → Lp(R), (11.3)

where SR is the Cauchy singular integral operator over R defined by

(SRϕ)(x) =
1
πi

∫
R

f(u)
u− xdu,

x ∈ R (the integral being considered in the principal value sense), and WR is
called the reflection operator on R defined by (WRf)(x) = f(−x), x ∈ R. In
addition, we have BaB−1 = (B−1

0 a)IR, where for a ∈ L∞(T) the operator B−1
0

is given by (B−1
0 a)(x) = a(x−i

x+i ), x ∈ R, and (B0a)(t) = a(i 1+t1−t ), t ∈ T \ {1}.
Thus, the coefficients of operator B are defined by a = B−1

0 a0, b = B−1
0 b0,

c = −B−1
0 a1, d = −B−1

0 b1. In addition, due to [Ka01], we know that it is
possible to construct an operator equivalence relation between the singular
integral operator B given in (11.3) and a pure singular integral operator

DR+ := HBF = uR+IR+ + vR+SR+ ∈ L([Lp(R+, |x|−1/2p)]2), (11.4)

where H = N−1
R+
K−1M−1

R+
and F = MR+KRR+NR+ are constructed based on

the invertible operator MR+ ∈ L([Lp(R+)]2, Lp(R)) defined by

MR+

(
ϕ1(x)
ϕ2(x)

)
= ϕ(x) :=

{
ϕ1(x), x ∈ R+
ϕ2(−x), x ∈ R−

(11.5)

(where R+ := (0 +∞) and R− := (−∞, 0)), the idempotent operator

K±1 =
1√
2

(
I I
I −I

)
∈ L([Lp(R+)]2), (11.6)

the invertible squaring variable and cutting weight operator NR+ defined by

(NR+ϕ)(x) = ϕ(x2), NR+ ∈ L([Lp(R+, |x|−1/2p)]2, [Lp(R+)]2), (11.7)

and the operator RR+ given by

RR+ =
(
SR+ + U1,R+ 0

0 IR+

)
∈ L([Lp(R+)]2), (11.8)

where (SR+f)(x) = 1
πi

∫
R+

f(u)
u−xdu and (U1,R+f)(x) = 1

πi

∫
R+

f(u)
u+xdu, x ∈ R+.

Note that SR+ + U1,R+ is an invertible operator and its inverse is given by
SR+ − U1,R+ . Thus, RR+ is also an invertible operator.
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In addition, the relation between the coefficients uR+ and vR+ of the new
operator DR+ in (11.4) and the coefficients of the operator A is given by the
formulae:

uR+(x) =
1
2

(
u11 u12
u21 u22

)
, vR+(x) =

1
2

(
v11 v12
v21 v22

)
, (11.9)

where u11 = a1(y)+b1(y)−(a1(−y)+b1(−y)), u12 = a0(y)+b0(y)−(a0(−y)+
b0(−y)), u21 = a1(y) + b1(y) + (a1(−y) + b1(−y)), u22 = a0(y) + b0(y) +
(a0(−y) + b0(−y)), v11 = a0(y) − b0(y) + a0(−y) − b0(−y), v12 = a1(y) −
b1(y) + a1(−y) − b1(−y), v21 = a0(y) − b0(y) − (a0(−y) − b0(−y)), v22 =
a1(y)−b1(y)−(a1(−y)−b1(−y)), and here we are using the change of variable
y = (x1/2 − i)/(x1/2 + i), x ∈ R+.

All the above presented operator identities allow the identification of the
operator relation stated in the next result.

Theorem 1. The singular integral operator A (with backward Carleman shift
(J̃ϕ)(t) = 1

tϕ
( 1
t

)
, t ∈ T) defined by A = a0IT + b0ST + a1J̃ + b1STJ̃ and

acting between the space Lp(T, ρ) (with ρ(t) = |t − 1|1−2/p) is equivalent to
the matrix (pure) singular integral operator

DR+ = uR+IR+ + vR+SR+ ∈ L[Lp(R+, |x|−1/2p)]2. (11.10)

The equivalence relation has the explicit form GAV = DR+ , where

G = N−1
R+
K−1M−1

R+
B ∈ L(Lp(T, ρ), [Lp(R+, |x|−1/2p)]2),

V = B−1MR+KRR+NR+ ∈ L([Lp(R+, |x|−1/2p)]2, Lp(T, ρ)).

On the other hand, we will extend the operator DR+ in (11.10) by the
identity into the whole [Lp(R, |x|−1/2p)]2 space. The resulting operator from
this equivalence after extension relation applied to DR+ has the form

DR :=
(
DR+ 0

0 I[Lp(R−,|x|−1/2p)]2

)
∈L([Lp(R+, |x|−1/2p)]2⊕[Lp(R−, |x|−1/2p)]2).

(11.11)
Thus, DR+ : [Lp(R+, |x|−1/2p)]2 → [Lp(R+, |x|−1/2p)]2 can be viewed as the
restriction of DR to its first component spaces. We will use the following
notation for this interpretation:

DR+ = Rest[Lp(R+,|x|−1/2p)]2(DR).

It directly follows from identity (11.11) that DR+ and DR enjoy the same
Fredholm as well as invertibility properties. In addition, the operator DR can
also be written in the form DR = uRIR +vRSR, where uR = χR− +#0uR+ , vR =
#0vR+ , where #0 is the zero extension operator, and χR− is the characteristic
function on R−. We will now pass from DR to a singular integral operator
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DT defined on the unit circle T by means of the isometric isomorphism B2 :=
diag(B,B) from [Lp(R, |x|−1/2p)]2 onto [Lp(T, w)]2 with the weight w(t) =
|i 1+t1−t |−1/2p|1− t|1−2/p. Therefore, we obtain in explicit form:

DT := B−1
2 DRB2 = uTIT + vTST. (11.12)

Note that the form of the weight w is a consequence of the use of the operator
B2 (see for instance, [BKS02]), with

uTIT = B−1
2 uRB2, vTIT = B−1

2 vRB2, (11.13)

where uT = diag(B0, B0)uR and vT = diag(B0, B0)vR in T+, and uT ≡ I2×2,
vT ≡ 02×2 in T−. The explicit form of these matrix functions is given by

uT(t) =
{
uT+(t), t ∈ T+
I2×2, t ∈ T−

, vT(t) =
{
vT+(t), t ∈ T+
02×2, t ∈ T−

, (11.14)

where for t ∈ T+ we have

uT+(t) =
1
2

(
μ11(t) μ12(t)
μ21(t) μ22(t)

)
(11.15)

with

μ11(t) = (a1(t1/2) + b1(t1/2))− (a1(−t1/2) + b1(−t1/2))
μ12(t) = (a0(t1/2) + b0(t1/2))− (a0(−t1/2) + b0(−t1/2))
μ21(t) = (a1(t1/2) + b1(t1/2)) + (a1(−t1/2) + b1(−t1/2))
μ22(t) = (a0(t1/2) + b0(t1/2)) + (a0(−t1/2) + b0(−t1/2))

and

vT+(t) =
1
2

(
ϑ11(t) ϑ12(t)
ϑ21(t) ϑ22(t)

)
(11.16)

with

ϑ11(t) = (a0(t1/2)− b0(t1/2)) + (a0(−t1/2)− b0(−t1/2))
ϑ12(t) = (a1(t1/2)− b1(t1/2)) + (a1(−t1/2)− b1(−t1/2))
ϑ21(t) = (a0(t1/2)− b0(t1/2))− (a0(−t1/2)− b0(−t1/2))
ϑ22(t) = (a1(t1/2)− b1(t1/2))− (a1(−t1/2)− b1(−t1/2)).

In the next theorem we assemble all the above operator relations.

Theorem 2. The singular integral operator A, with backward Carleman shift
(J̃ϕ)(t) = 1

tϕ
( 1
t

)
, t ∈ T, defined by A = a0IT + b0ST + a1J̃ + b1STJ̃ and

acting on the space Lp(T, ρ), ρ(t) = |t− 1|1−2/p, is equivalent after extension
to the matrix singular integral operator DT = uTIT + vTST ∈ L[Lp(T, w)]2,
where w(t) = |i 1+t1−t |−1/2p|1 − t|1−2/p, and with coefficients uT and vT given
by (11.14), (11.15), and (11.16).
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Now we will relate the operator A defined on (11.1) with a matrix Toeplitz
operator through an additional operator relation. In view of this, in the follow-
ing result PT stands for the Riesz projection in [Lp(T, w)]2: PT = 1

2 (IT + ST).

Corollary 1. For each t ∈ T, assume that a0(t) �= b0(t) or a1(t) �= b1(t).
The singular integral operator with shift A = a0IT + b0ST + a1J̃ + b1STJ̃ is
equivalent to the matrix Toeplitz operator

Tψ = PTψ|[PTLp(T,w)]2 : [PTL
p(T, w)]2 → [PTL

p(T, w)]2 ,

where ψ := (uT − vT)−1(uT + vT), and w(t) = |i 1+t1−t |−1/2p|1− t|1−2/p.

11.4 Conditions for the Invertibility of Operator A

As stated in the Introduction (and as a consequence of the operator relations
presented in the previous section), in this section we will obtain an invertibility
criterion for the operator A and the form of its inverse/lateral inverse (under
the conditions which ensure such invertibility).

Let us start by recalling some basic definitions which will be used in what
follows. Considering Banach spaces X and Y , an operator T ∈ L(X,Y ) is said
to be left (respectively right) invertible if there is an operator T (−1) ∈ L(Y,X)
such that

T (−1)Tx = x, x ∈ X (TT (−1)y = y, y ∈ Y ).

The operator T (−1) is then called a left (respectively right) inverse of T . If
an operator T is both left and right invertible, then all left and right inverses
are equal to each other and coincide with the inverse T−1 of T . Recall also
that an operator T− : Y −→ X is called a generalized inverse of a bounded
linear operator T : X −→ Y if TT−T = T .

A representation of the form A = A−ΛA+ is called a (right) generalized
factorization of the invertible matrix function A ∈ [L∞(T)]2×2 in the space
[Lp(T, σ)]2 if Λ(t) = diag(tℵ1 , tℵ2) with certain integers ℵ1 ≥ ℵ2 and if the
factors A− and A+ satisfy the following conditions:

i) A− ∈ [Lp−(T, σ)]2×2, A+ ∈ [Lq+(T, σ−1)]2×2, A−1
− ∈ [Lq−(T, σ−1)]2×2,

A−1
+ ∈ [Lp+(T, σ)]2×2 ( 1

p + 1
q = 1), where Lp+(T, σ) := PTL

p(T, σ)
and Lp−(T, σ) := QTL

p(T, σ) ⊕ C are subspaces of Lp(T, σ), and PT =
1
2 (IT + ST) and QT = 1

2 (IT − ST).
ii) The operator A−PTA

−1
− is bounded on the space [Lp(T, σ)]2.

The integers ℵi, i = 1, 2, are called (right) indices or also partial indices of
the generalized factorization of the matrix function A. The sum ℵ1 + ℵ2 =: ℵ
is referred to as the total index or sum index of the matrix function A.
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Theorem 3. Let uT, vT ∈ [L∞(T)]2×2 be the matrix functions given by (11.13)
such that det(uT(t)± vT(t)) �= 0, and assume that ψ = (uT − vT)−1(uT + vT)
admits a generalized factorization

ψ(t) = ψ−(t)Λ(t)ψ+(t).

Then the operator A is generalized invertible on the space Lp(T, |t− 1|1−2/p),
1 < p <∞. A generalized inverse of A is given by

A− = B−1MR+KRR+NR+Rest[Lp(R+,|x|−1/2p)]2
(
B2(ψ−1

+ PT + ψ−QT)

(Λ−1PT +QT)ψ−1
− (uTIT − vTIT)−1B−1

2

)
N−1

R+
K−1M−1

R+
B, (11.17)

where B±1,M±1
R
,K,RR+ , N

±1
R

, and B±1
2 are given in the last section.

The operator A is invertible (left-sided invertible, right-sided invertible) if
and only if all indices of the matrix function ψ are zero (nonnegative, non-
positive). In such a case, the inverse (left inverse, right inverse) is also given
by (11.17) (where in each case some simplifications occur in the formula).

Proof. From Theorem 2 we have that the operator A is equivalent after ex-
tension to the operator DT given by (11.12). Now, we rewrite the operator DT

in terms of the Riesz projections PT and QT, e.g.,

DT = uTIT + vTST = (uTIT + vTIT)PT + (uTIT − vTIT)QT.

The invertibility conclusions for the operator DT are obtained from the well-
known Simonenko’s theorem; see, for instance, Theorem 4.2 in [MiPr80] for
continuous matrix functions. This can be generalized for bounded measur-
able matrix functions as follows (see [MiPr80, Chapter V, Section 5]): Un-
der the assumption that the matrix-valued function ψ admits a generalized
factorization in the space [Lp(T, w)]2, say ψ = ψ−Λψ+, then the opera-
tor DT is generalized invertible on the space [Lp(T, w)]2, 1 < p < ∞ and
w(t) = |i 1+t1−t |−1/2p|1− t|1−2/p with a generalized inverse given by

D−
T

= (ψ−1
+ PT + ψ−QT)(Λ−1PT +QT)ψ−1

− (uTIT − vTIT)−1. (11.18)

In the case of all right partial indices of the matrix function ψ being zero
(nonnegative, nonpositive), then DT is invertible (left-sided invertible, right-
sided invertible) and the inverse (left-sided inverse, right-sided inverse) is also
given by (11.18).

Finally, we will use the explicit equivalence relation exhibited in Theo-
rems 1 and 2 to obtain a generalized inverse (inverse, left inverse, right inverse)
of the operator A:

A− = V Rest[Lp(R+,|x|−1/2p)]2(B2D−
T
B−1

2 ) G, (11.19)

where the operators B±1
2 , G, and V are given in Theorem 1. Putting equal-

ity (11.18) into the equality (11.19) and writing the explicit form of G and V,
we obtain the conclusion.
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11.5 Example

We end this work by considering a concrete example of an operator A in order
to derive a corresponding conclusion about its invertibility.

Let A = a0IT + b0ST + a1J̃ + b1STJ̃ : Lp(T, ρ) → Lp(T, ρ), with ρ(t) =
|t− 1|1−2/p and with coefficients

a0(t) := −1
2

sin2
(π

2
t2
)
, a1(t) :=

1
2

sin
(π

2
signT(t)t4

)
,

b0(t) :=
1
2
t4, b1(t) :=

1
2

sin
(π

2
signT(t)t4

)
,

where signT is defined by the rule

signT(t) :=
{

1, if t ∈ T+
−1, if t ∈ T−.

From Theorem 2 we know that operator A is equivalent to the matrix operator
DT = uTIT + vTST : [Lp(T, w)]2 → [Lp(T, w)]2, where

w(t) =
∣∣∣∣i1 + t

1− t

∣∣∣∣−1/2p

|1− t|1−2/p

and uT, vT are obtained as in (11.13) and defined on T as indicated in (11.14),
(11.15), and (11.16), with

uT+(t) =
1
2

(
μ11(t) μ12(t)
μ21(t) μ22(t)

)
.

In the present case, we have

μ11(t) =
1
2

[
signT(t/2)t2 + sin

(π
2

signT(t1/2)t2
)

− signT(−t1/2)t2 − sin
(π

2
signT(−t1/2)t2

)]
,

μ12(t) = 0,

μ21(t) =
1
2

[
signT(t/2)t2 + sin

(π
2

signT(t1/2)t2
)

+ signT(−t1/2)t2 + sin
(π

2
signT(−t1/2)t2

)]
,

μ22(t) = sin2
(π

2
t
)

+ t2.

Note that this yields in particular μ11(±1) = 1
2 [1+sin

(
π
2

)
+1−sin

(
−π

2

)
] = 2,

μ12(±1) = 0, μ21(±1) = 1
2 [1 + sin

(
π
2

)
− 1 + sin

(
−π

2

)
] = 0, and μ22(±1) = 2.

Also, for the present case, we have

vT+(t) =
1
2

(
ϑ11(t) ϑ12(t)
ϑ21(t) ϑ22(t)

)
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with ϑ11(t) = sin2 (π
2 t
)
− t2, ϑ12(t) = 1

2 [signT(t/2)t2 − sin
(
π
2 signT(t1/2)t2

)
+

signT(−t1/2)t2 − sin
(
π
2 signT(−t1/2)t2

)
], ϑ21(t) = 0, ϑ22(t) = 1

2 [signT(t/2)t2 −
sin
(
π
2 signT(t1/2)t2

)
− signT(−t1/2)t2 + sin

(
π
2 signT(−t1/2)t2

)
], and satisfying

ϑ11(±1) = 0, ϑ12(±1) = 1
2 [1 − 1 − (sin

(
π
2

)
+ sin

(
−π

2

)
)] = 0, ϑ21(±1) = 0,

ϑ22(±1) = 1
2

[
1 + 1− sin

(
π
2

)
+ sin

(
−π

2

)]
= 0.

Therefore, the matrix functions uT and vT are continuous on the whole T.
Considering now ψ = (uT − vT)−1(uT + vT), it follows (in this case) that

ψ(t) =

⎛⎜⎝ − 2( 1
2 sin(π

2 t
2)+ 1

2+ 1
2 sin2(π

2 t)− 1
2 t

2)
− sin(π

2 t
2)−1+sin2(π

2 t)−t2 0

0
2( 1

2 sin2(π
2 t)− 1

2 sin(π
2 t

2)+t2)
sin2(π

2 t)+sin(π
2 t

2)

⎞⎟⎠ ,
for t ∈ T+, and ψ(t) = I2×2 for t ∈ T−. First of all, to consider the eventual
Fredholm property of the present operator A, it is enough to study det(ψ).
Computing such a determinant, we have

det(ψ(t)) = −
(
− sin

(
π
2 t

2
)
− 1− sin2 (π

2 t
)

+ t2
) (

sin2 (π
2 t
)

+ 2t2 − sin
(
π
2 t

2
))(

sin
(
π
2 t

2
)

+ 1− sin2 (π
2 t
)

+ t2
) (

sin2 (π
2 t
)

+ sin
(
π
2 t

2
))

for t ∈ T+, and det(ψ(t)) = 1 in the case of t ∈ T−. The range of det(ψ(t)) is
plotted in Figure 11.1.

0.5

−0.5

1.00.50.0−0.5−1.0−1.5

Fig. 11.1. The range of det(ψ) in the example.

Since uT and vT are continuous matrix-valued functions, the singular inte-
gral operator with backward Carleman shift A = a0IT + b0ST + a1J̃ + b1STJ̃
acting on the space Lp(T, ρ), where 1 < p < ∞ and ρ(t) = |t − 1|1−2/p, is
a Fredholm operator if and only if det(uT(t) ± vT(t)) �= 0, t ∈ T [CaRo09].
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Moreover, under the Fredholm property, the Fredholm index of A is given by
IndA = −wind det(ψ), where ψ := (uT − vT)−1(uT + vT) and wind det(ψ)
denotes the winding number of det(ψ).

In this way, it turns out that A is a Fredholm operator in Lp(T, w) but
with IndA = −1. Thus, the present particular operator A is not invertible in
the spaces under consideration.
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12.1 Introduction

The theory of bending of plates with transverse shear deformation is very im-
portant in mechanical engineering because of its direct application to the study
of deformable structures and because of its mathematical sophistication. The
well-posedness of boundary value problems and of initial-boundary value prob-
lems with various types of boundary conditions for this model has been stud-
ied in detail in [ChCo00] and [ChCo05], respectively. Corresponding results for

have been obtained in [ChEtAl04], [ChEtAl05a], [ChEtAl05b], [ChEtAl06],
[ChCo07], [ChCo08a], [ChCo08b], [ChCo08c], [ChCo09a], and [ChCo09b].
Here we present the solution to the case of a piecewise homogeneous plate
with transmission boundary conditions.

12.2 Formulation of the Problem

Suppose that the plate occupies a region S̄ × [−h0/2, h0/2], S̄ ⊂ R2. The
displacement–temperature vector

U(x, t) = (u(x, t)T , u4(x, t))T , x = (x1, x2) ∈ S̄,
u(x, t) = (u1(x, t), u2(x, t), u3(x, t))T

satisfies the field equations

LU(x, t) = B0∂
2
tU(x, t) + B1∂tU(x, t) + AU(x, t)

= Q(x, t), (x, t) ∈ S × (0,∞),

where
B0 = diag {ρh2, ρh2, ρ, 0}, h2 = h2

0/12,

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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the same plate model where, additionally, there are significant thermal effects
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B1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
η∂1 η∂2 0 κ−1

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
h2)∂1

A h2)∂2
0

0 0 0 −Δ

⎞⎟⎟⎠ ,

A =

⎛⎝ −h2μΔ− h2(λ+ μ)∂2
1 + μ −h2(λ+ μ)∂1∂2 μ∂1

−h2(λ+ μ)∂1∂2 −h2μΔ− h2(λ+ μ)∂2
2 + μ μ∂2

−μ∂1 −μ∂2 −μΔ

⎞⎠ ,
ρ, ), η, κ, λ, and μ are physical constants, and Δ is the Laplacian. Without
loss of generality [ChEtAl04], we consider the initial conditions

U(x, 0) = 0, ∂tu(x, 0) = 0, x ∈ S.

We assume that the plate is infinite and piecewise homogeneous; that is,
it is made of one material occupying an interior domain S+ and of another
one occupying an exterior domain S−. The two domains are separated by a
simple, closed, smooth curve ∂S and such that S̄+∪ S̄− = R2. Both materials
are homogeneous and isotropic. We write

Σ± = S± × (0,∞), Γ = ∂S × (0,∞)

and consider the initial-boundary value problem (TC) consisting of

L±U±(x, t) = Q±(x, t), (x, t) ∈ Σ±,

U±(x, 0) = 0, ∂tu±(x, 0) = 0, x ∈ S±,

U+
+ (x, t)− U−

− (x, t) = F (x, t), (x, t) ∈ Γ,
(T+U+)+(x, t)− (T−U−)−(x, t) = G(x, t), (x, t) ∈ Γ,

where

(T±U±)(x, t)=

(
(T±u±)(x, t)− h2

±)±n(x)u±,4(x, t)
∂nu±,4(x, t)

)
,

T =

⎛⎜⎝h
2
±
[
(λ± + 2μ±)n1∂1 + μ±n2∂2

]
h2

±(λ±n1∂2 + μ±n2∂1) 0
h2

±(μ±n1∂2 + λ±n2∂1) h2
±
[
(λ± + 2μ±)n2∂2 + μ±n1∂1

]
0

μ±n1 μ±n2 μ±∂n

⎞⎟⎠,
n = (n1, n2, 0)T is the unit outward normal to ∂S, ∂n is the derivative in the
direction of n, and the subscripts and superscripts ± distinguish between the
constants, functions, and operators characterizing the domains S+ and S−.

12.3 Function Spaces

We denote the Laplace transformation by
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(LU)(x, p) = Û(x, p) =

∞∫
0

e−ptU(x, t) dt

and introduce a number of function spaces that play an essential role in the
subsequent analysis.

12.3.1 Spaces with a Parameter

Let m ∈ R and p ∈ C. In our notation we have the following.
Hm(R2): the standard Sobolev space of scalar distributions v̂4(x), with norm

‖v̂4‖m =
{∫

R2

(1 + |ξ|2)m|ṽ4(ξ)|2dξ
}1/2

;

Hm,p(R2): the space of three-component vector distributions v̂(x), with norm

‖v̂‖m,p =
{∫

R2

(1 + |ξ|2 + |p|2)m|ṽ(ξ)|2dξ
}1/2

;

Hm,p(R2) = Hm,p(R2)×Hm(R2), with norm ‖|V̂ ‖|m,p = ‖v̂‖m,p + ‖v̂4‖m;

Hm(S±) and Hm,p(S±): the spaces of the restrictions to S± of all v̂4 ∈
Hm(R2) and v̂ ∈ Hm,p(R2), with norms

‖û4‖m;S± = inf
v̂4∈Hm(R2):v̂4|S± =û4

‖v̂4‖m,

‖û‖m,p;S± = inf
v̂∈Hm,p(R2):v̂|S± =û

‖v̂‖m,p;

Hm,p(S±) = Hm,p(S±)×Hm(S±), with norm

‖|Û‖|m,p;S± = ‖û‖m,p;S± + ‖û4‖m;S± ;

H1/2(∂S), H1/2,p(∂S): the spaces of the traces on ∂S of all û4 ∈ H1(S±) and
û ∈ H1,p(S±), with norms

‖ϕ̂4‖1/2;∂S = inf
û4∈H1(S+):û4|∂S=ϕ̂4

‖û4‖1;S+ ,

‖ϕ̂‖1/2,p;∂S = inf
û∈H1,p(S+):û|∂S=ϕ̂

‖û‖1,p;S± ;

H1/2,p(∂S)=H1/2,p(∂S)×H1/2(∂S), with norm

‖|F̂‖|1/2,p;∂S=‖ϕ̂‖1/2,p;∂S + ‖ϕ̂4‖1/2;∂S ;

H−1/2(∂S), H−1/2,p(∂S), and H−1/2,p(∂S): the duals of the spaces H1/2(∂S),
H1/2,p(∂S), and H1/2,p(∂S) with respect to the duality generated by the inner
product in

[
L2(∂S)

]n.
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12.3.2 Transform Spaces

Let κ > 0, k ∈ R, and Cκ = {p = σ + iτ ∈ C : σ > κ}. We introduce the
following spaces.
HL

−1,k,κ(R
2), HL

1,k,κ(S
±), and HL

±1/2,k,κ(∂S): the spaces of all q̂(x, p), û(x, p),
and ê(x, p) that define holomorphic mappings

q̂ : Cκ → H−1,0(R2), û : Cκ → H1,0(S±), ê : Cκ → H±1/2,0(∂S),

with norms

‖q̂‖2−1,k,κ = sup
σ>κ

∞∫
−∞

(1 + |p|2)k‖q̂(x, p)‖2−1,p dτ,

‖û‖21,k,κ;S± = sup
σ>κ

∞∫
−∞

(1 + |p|2)k‖û(x, p)‖21,p;S± dτ,

‖ê‖2±1/2,k,κ;∂S = sup
σ>κ

∞∫
−∞

(1 + |p|2)k‖ê(x, p)‖2±1/2,p;∂S dτ ;

HL
−1,k,l,κ(R

2) = HL
−1,k,κ(R

2) × HL
1,l,κ(R

2), HL
1,k,l,κ(S

±) = HL
1,k,κ(S

±) ×
HL

1,l,κ(S
±), and HL

±1/2,k,l,κ(∂S) = HL
±1/2,k,κ(∂S)×HL

±1/2,l,κ(∂S): the spaces

of all V̂ = {v̂, v̂4}, Û = {û, û4}, and Ê = {ê, ê4}, with norms

‖|V̂ ‖|−1,k,l,κ = ‖v̂‖−1,k,κ + ‖v̂4‖−1,l,κ,

‖|Û‖|1,k,l,κ;S± = ‖û‖1,k,κ;S± + ‖û4‖1,l,κ;S± ,

‖|Ê‖|±1/2,k,l,κ;∂S = ‖ê‖±1/2,k,κ;∂S + ‖ê4‖±1/2,l,κ;∂S .

12.3.3 Spaces of Originals

Let R3
+ = R2 × (0,∞). We use the following notation.

HL−1

−1,k,l,κ(R
3
+), HL−1

1,k,l,κ(Σ
±), HL−1

±1/2,k,l,κ(Γ ): the spaces of the inverse Laplace
transforms of the elements of HL

−1,k,l,κ(R
2), HL

1,k,l,κ(S
±), HL

±1/2,k,l,κ(∂S),
with norms

‖|V ‖|−1,k,l,κ = ‖|V̂ ‖|−1,k,l,κ, ‖|U‖|1,k,l,κ;Σ± = ‖|Û‖|1,k,l,κ;S± ,

‖|E‖|±1/2,k,l,κ;Γ = ‖|Ê‖|±1/2,k,l,κ;∂S .

We denote by γ± the trace operators from Σ± to Γ and by γ±
0 the trace

operators from Σ± to S± × {0}.
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12.4 The Weak Solution of (TC)

This is defined to be a pair of distributions U(x, t) = {U+(x, t), U−(x, t)},
where U± ∈ HL−1

1,0,0,κ(Σ
±), such that

(i) γ±
0 u± = 0;

(ii) γ+U+ − γ−U− = F (x, t), (x, t) ∈ Γ ;
(iii) for all W = {W+,W−} ∈ C∞

0 (R2 × [0,∞)),

Υ+(U+,W+) + Υ−(U−,W−) =

∞∫
0

{
(Q,W )0 + (G,W )0;∂S

}
dt,

where

Υ±(U±,W±) =

∞∫
0

{
a±(u±, w±)(∇u±,4,∇w±,4)0;S±

− (B1/2
0,±∂tu±, B

1/2
0,± ∂tw±)0;S± − κ−1

± (u±,4, ∂tw±,4)0;S±

− h2
±)±(u±,4,divw±)0;S± − η±(divu±, ∂tw±,4)0;S±

}
dt.

Let h2
+)+η

−1
+ = ι+ and h2

−)−η
−1
− = ι−.

Theorem 1. If κ > 0, l ≥ 0, and

Q ∈ HL−1

−1,l+1,l,κ(R
3
+), F ∈ HL−1

1/2,l+1,l+1,κ(Γ ), G ∈ HL−1

−1/2,l+1,l,κ(Γ ),

then there is ε > 0 such that for any ι± satisfying |ι+ − ι−| < ε, problem
(TC) has a unique weak solution

U(x, t) = {U+(x, t), U−(x, t)}, U± ∈ HL−1

1,l,l,κ(Σ
±),

and

‖|U+‖|1,l,l,κ;Σ+ + ‖|U−‖|1,l,l,κ;Σ−

≤ c
{
‖|Q‖|−1,l+1,l,κ + ‖|F‖|1/2,l+1,l+1,κ;Γ + ‖|G‖|−1/2,l+1,l,κ;Γ

}
.

12.5 Boundary Integral Equations

Consider a matrix of fundamental solutions for the homogeneous governing
system (Q = 0); that is, a matrix D such that

B0(∂2
tD)(x, t) + (B1∂tD)(x, t) +(AD)(x, t) = δ(x, t)I, (x, t) ∈ R3,

D(x, t) = 0, t < 0,
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where δ(x, t) is the Dirac delta and I is the identity (4× 4)-matrix.
Let A and B be smooth functions with compact support on ∂S × R and

equal to zero for t < 0.
We define the single-layer potential of density A by

(VA)(x, t) =
∫
Γ

D(x− y, t− τ)A(y, τ) dsy dτ.

V is extended by continuity to HL−1

−1/2,k,l,κ(Γ ).
The double-layer potential of density B is defined by

(WB)(x, t) =
∫
Γ

P(x, y, t− τ)B(y, τ) dsydτ,

where P(x, y, t) is a first-order differential operator applied to D. W is ex-
tended by continuity to HL−1

1/2,k,l,κ(Γ ). We denote by V±A and W±B the po-
tentials for the media in Σ±.

A first representation of the solution is of the form

U+(x, t) = (V+A+)(x, t), (x, t) ∈ Σ+,

U−(x, t) = (V−A−)(x, t), (x, t) ∈ Σ−.

This leads to a system of boundary integral equations written as

TV V {A+,A−} = {F,G}, (x, t) ∈ Γ. (12.1)

Theorem 2. (i) For any κ > 0, l ≥ 0, and

F ∈ HL−1

1/2,l+1,l+1,κ(Γ ), G ∈ HL−1

−1/2,l+1,l,κ(Γ ),

system (12.1) has a unique solution

{A+,A−} ∈ HL−1

−1/2,l−1,l−2,κ(Γ )×HL−1

−1/2,l−1,l−2,κ(Γ ),

which satisfies

‖|A±‖|−1/2,l−1,l−2,κ;Γ ≤ c
{
‖|F‖|1/2,l+1,l+1,κ;Γ + ‖|G‖|−1/2,l+1,l,κ;Γ

}
.

(ii) The representation U = {U+, U−} constructed with the solution
{A+,A−} of system (12.1) is the weak solution of problem (TC).

The second representation of the solution is

U+(x, t) = (W+B+)(x, t), (x, t) ∈ Σ+,

U−(x, t) = (W−B−)(x, t), (x, t) ∈ Σ−.

This leads to a system of boundary integral equations of the form

TWW {B+,B−} = {F,G}, (x, t) ∈ Γ. (12.2)
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Theorem 3. (i) For any κ > 0, l ≥ 0, and

F ∈ HL−1

1/2,l+1,l+1,κ(Γ ), G ∈ HL−1

−1/2,l+1,l,κ(Γ ),

system (12.2) has a unique solution

{B+,B−} ∈ HL−1

1/2,l−1,l−1,κ(Γ )×HL−1

1/2,l−1,l−1,κ(Γ ),

which satisfies

‖|B±‖|1/2,l−1,l−1,κ;Γ ≤ c
{
‖|F‖|1/2,l+1,l+1,κ;Γ + ‖|G‖|−1/2,l+1,l,κ;Γ

}
.

(ii) The representation U = {U+, U−} constructed with the solution
{B+,B−} of system (12.2) is the weak solution of (TC).

The third representation of the solution is

U+(x, t) = (V+A+)(x, t), (x, t) ∈ Σ+,

U−(x, t) = (W−B−)(x, t), (x, t) ∈ Σ−.

The corresponding system of boundary integral equations in this case is of the
form

TVW {A+,B−} = {F,G}. (12.3)

Theorem 4. (i) For any κ > 0, l ≥ 0, and

F ∈ HL−1

1/2,l+1,l+1,κ(Γ ), G ∈ HL−1

−1/2,l+1,l,κ(Γ ),

system (12.3) has a unique solution

{A+,B−} ∈ HL−1

−1/2,l−1,l−2,κ(Γ )×HL−1

1/2,l−1,l−1,κ(Γ ),

which satisfies

‖|A±‖|−1/2,l−1,l−2,κ;Γ +‖|B±‖|1/2,l−1,l−1,κ;Γ

≤ c
{
‖|F‖|1/2,l+1,l+1,κ;Γ + ‖|G‖|−1/2,l+1,l,κ;Γ

}
.

(ii) The representation U = {U+, U−} constructed with the solution
{B+,B−} of system (12.3) is the weak solution of problem (TC).
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2 University of Piteşti, Romania; smaranda@dim.uchile.cl
3 Tata Institute of Fundamental Research, Bangalore, India;
vanni@math.tifrbng.res.in

13.1 Introduction

In this chapter, we consider periodic media with a small period ε and we are
interested in Burnett coefficients. These parameters are important in the study
of acoustic wave propagation in such media since various physical constants
associated with wave propagation (like reflection, refraction, transmission, and
dispersion coefficients) are included in the Burnett coefficients.

Let us introduce some notations adopted in this work. We denote by Y
the reference cell (0, 2π), and for any real number γ ∈ [0, 1], let T be any
measurable subset of Y such that |T | = γ|Y |. We consider the operator

A
def= − d

dy

(
α(y)

d

dy

)
, y ∈ R,

where the coefficient α ∈ L∞
# (Y ), i.e., α = α(y) is a Y -periodic bounded

measurable function defined on R, and in the reference cell is given by

α(y) = α0χχTC (y) + α1χχT (y), y ∈ Y,

with α0, α1 > 0, α0 �= α1. Here χχ
T
(y) denotes the characteristic function of

T . For each ε > 0, we also consider the εY -periodic operator Aε defined by

Aε
def= − d

dx

(
αε(x)

d

dx

)
with αε(x)def=α(xε ), x ∈ R.

The homogenized and the dispersion coefficients denoted by q and d, re-

A which we introduce now. Let us consider the following spectral problem
parameterized by η ∈ R: find λ = λ(η) ∈ R and ψ = ψ(y; η) �≡ 0 such that{

Aψ(·; η) = λ(η)ψ(·; η) in R, ψ(·; η) is (η;Y )-periodic, i.e.,
ψ(y + 2πm; η) = e2πimηψ(y; η) ∀m ∈ Z, y ∈ R.

(13.1)
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Next, by the Floquet theory, we define φ(y; η) = e−iyηψ(y; η), and (13.1) can
be rewritten in terms of φ as follows:

A(η)φ = λφ in R, φ is Y -periodic. (13.2)

Here, the operator A(η) is called the translated operator and is defined by
A(η) = e−iyηAeiyη. It is well known (see [BLP78], [CPV95]) that for each
η ∈ Y ′ =

[
− 1

2 ,
1
2

)
, the above spectral problem (13.2) admits a discrete

sequence of eigenvalues λm(η); their associated eigenfunctions φm(y; η) (re-
ferred to as Bloch waves) enable us to describe the spectral resolution of
A (as an unbounded self-adjoint operator in L2(R)) in the orthogonal basis
{eiyηφm(y; η) : m ≥ 1, η ∈ Y ′}.

Let us introduce Bloch waves at the ε-scale:

λεm(ξ) = ε−2λm(η), φεm(x; ξ) = φm(y; η), ψεm(x; ξ) = ψm(y; η),

where the variables (x, ξ) and (y, η) are related by y = x
ε and η = εξ.

We consider a sequence {uε} bounded in H1(R) and f ∈ L2(R) satisfying

Aεuε = f in R.

We assume that uε ⇀ u weakly in H1(R). The homogenization problem con-
sists of passing to the limit, as ε→ 0, in the previous equation and obtaining
the equation satisfied by u, namely,

Qu
def= − q d

2u

dx2 = f in R,

where q is a constant known as the homogenized coefficient (see [BLP78]).
A simple relation linking q with Bloch waves is the following: q = 1

2λ
(2)
1 (0)

(see [COV02]). At this point, it is appropriate to recall that derivatives of
the first eigenvalue and eigenfunction at η = 0 exist thanks to the analy-
ticity property established in [CV97]. To see how the dispersion coefficient d
arises, let us consider the wave propagation problem in the periodic structure
governed by the operator ∂tt + Aε. If we consider short waves of low energy
with wave number satisfying ε2|ξ|4 = O(1) and ε4|ξ|6 = o(1), then a simplified
description is obtained with the operator ∂tt+Q+ε2D, where D is the fourth
order operator whose symbol is 1

4!λ
(4)
1 (0)ξ4 (see [COV06]). The coefficient

d = 1
4!λ

(4)
1 (0), which captures dispersive effects on such waves, is the dispersion

coefficient and it represents a corrector to the periodic medium. It was studied
in [COV06] and, in particular, the following physical space representation for
it was obtained.

Proposition 1. We have the relations

λ1(0) = 0, λ
(1)
1 (0) = 0,

1
2!
λ

(2)
1 (0) = q,

1
3!
λ

(3)
1 (0) = 0,

1
4!
λ

(4)
1 (0) = d,
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where q can be explicitly expressed:

1
q

=
γ

α1
+

1− γ
α0

. (13.3)

Moreover, the dispersion coefficient d admits the following representation:

d = − q

|Y |

∫
Y

(X(T ))2, (13.4)

with test function X(T ) defined by the following cell problem:⎧⎪⎪⎨⎪⎪⎩
−dX(T )

dy
= 1− q

(χχ
T

α1
+

1− χχ
T

α0

)
in R,

X(T ) ∈ H1
#(Y ),

1
|Y |

∫
Y

X(T )(y)dy = 0.
(13.5)

The formula (13.3) shows that q does not depend on the microstructure.
On the other hand, formulas (13.4)–(13.5) show explicitly how the dispersion
coefficient d depends on the microstructure through the characteristic func-
tion χχ

T
. In order to study this dependence of the dispersion coefficient d,

first, in Section 13.2 we are interested in the particular case of a low-contrast
periodic structure. We expand the homogenized and dispersion coefficients
with respect to the contrast parameter and we study the signs of the different
coefficients in the expansions. Next, in Section 13.3 we investigate the gen-
eral one-dimensional structure and we look for the optimal lower and upper
bounds of the dispersion coefficient as the microstructure varies preserving
the volume proportion γ. We find the set in which the dispersion coefficient
lies.

13.2 Low-Contrast Periodic Structure

In this section, we assume that the periodic medium consists of a two-phase
material with low contrast. More precisely, let α0 be the constant coefficient
representing the background isotropic homogeneous medium and α1 be the
corresponding coefficient for the perturbed medium. The main assumption of
this section is the relation

α1 = (1 + δ)α0,

with δ ∈ R, |δ| << 1 denoting the contrast parameter. We study the depen-
dence of the homogenized and the dispersion coefficients in terms of δ. Indeed,
we will expand them as a power series in δ and give explicit expressions for
the coefficients of various terms of the expansion which in turn yield necessary
and sufficient conditions for their signs. The significance of the coefficients is
obvious: they represent the contributions of the microstructure at various or-
ders of δ. Though, in principle, we can deal with all the coefficients appearing
in the expansion, we treat only the first five of them since they are of interest
to engineers (see [Tor02, page 526]).
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Proposing the following expansions with respect to δ:

q =
∞∑
k=0

δkq(k) and d =
∞∑
k=0

δkd(k), (13.6)

we establish the following theorem.

Theorem 1. The first five terms in the expansions (13.6) satisfy the following
inequalities:

q(0) > 0, q(1) ≥ 0, q(2) ≤ 0, q(3) ≥ 0, q(4) ≤ 0, (13.7)

d(0) = 0, d(1) = 0, d(2) ≤ 0, (13.8)

d(3) ≥ 0 if and only if γ ≤ 2
3
, d(4) ≤ 0 if and only if γ ≤ 1

2
. (13.9)

Remark 1. In [CSMSV08], we have showed that the inequalities (13.7), (13.8)
hold irrespective of dimensions and without any hypothesis on γ. Moreover,
we have proved the inequalities (13.9) first in one dimension, and second in
higher dimensions, but with coefficients varying only in one direction (under
what is called the laminated microstructure hypothesis). More precisely, two
examples of laminated structures referred to as longitudinal and orthogonal
cases have been treated there.

Remark 2. Since the homogenized and dispersion coefficients depend on the
microstructure, so do their signs. Our finding is that this dependence is only
through the local proportion parameter γ. It is worth remarking that this
parameter plays a crucial role in various optimal design problems involving
microstructures (see [Mil02], [MT97]). When γ = 0 it is easy to see that d
and hence, d(3) and d(4) vanish. It is a surprise to observe that as soon as
γ is positive and small, the coefficients d(3) and d(4) pick up opposite signs.
Results analogous to (13.9) in higher dimensions are open.

Proof. Using the representation (13.3) and the hypothesis α1 = (1 + δ)α0, it
is straightforward to get the expansion for q. More precisely, we obtain

q(0) = α0 > 0, q(1) = α0γ ≥ 0, q(2) = −α0γ(1− γ) ≤ 0, (13.10)

q(3) = α0γ(1− γ)2 ≥ 0, q(4) = −α0γ(1− γ)3 ≤ 0. (13.11)

This concludes the proof of the inequalities (13.7).
On the other hand, proposing the ansatz

X(T ) = X
(0)
(T ) + δX(1)

(T ) + δ2X(2)
(T ) + δ3X(3)

(T ) + δ4X(4)
(T ) + · · · (13.12)

and using the expansion of q in the representation formula (13.4) of the dis-
persion coefficient, we have
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d = − 1
|Y |

∞∑
i,j,k=0

δi+j+kq(i)
∫
Y

X
(j)
(T )X

(k)
(T ).

Therefore, the coefficients d(j), j ∈ {0, 1, 2, 3, 4} in (13.6) are given by

d(0) = −q
(0)

|Y |

∫
Y

(
X

(0)
(T )

)2
, (13.13)

d(1) = − 1
|Y |

[
2q(0)

∫
Y

X
(0)
(T )X

(1)
(T ) + q(1)

∫
Y

(
X

(0)
(T )

)2]
, (13.14)

d(2) = − 1
|Y |

[
2q(0)

∫
Y

X
(0)
(T )X

(2)
(T ) + q(0)

∫
Y

(
X

(1)
(T )

)2
+ 2q(1)

∫
Y

X
(0)
(T )X

(1)
(T ) + q(2)

∫
Y

(
X

(0)
(T )

)2]
, (13.15)

d(3) = − 1
|Y |

[
2q(0)

∫
Y

X
(0)
(T )X

(3)
(T ) + 2q(0)

∫
Y

X
(1)
(T )X

(2)
(T ) + 2q(1)

∫
Y

X
(0)
(T )X

(2)
(T )

+ q(1)
∫
Y

(
X

(1)
(T )

)2 + 2q(2)
∫
Y

X
(0)
(T )X

(1)
(T )

+q(3)
∫
Y

(
X

(0)
(T )

)2]
, (13.16)

d(4) = − 1
|Y |

[
2q(0)

∫
Y

X
(0)
(T )X

(4)
(T ) + 2q(0)

∫
Y

X
(1)
(T )X

(3)
(T ) + q(0)

∫
Y

(
X

(2)
(T )

)2
+ 2q(1)

∫
Y

X
(0)
(T )X

(3)
(T ) + 2q(1)

∫
Y

X
(1)
(T )X

(2)
(T ) + 2q(2)

∫
Y

X
(0)
(T )X

(2)
(T )

+ q(2)
∫
Y

(
X

(1)
(T )

)2 + 2q(3)
∫
Y

X
(0)
(T )X

(1)
(T ) + q(4)

∫
Y

(
X

(0)
(T )

)2]
.(13.17)

Let us now establish some crucial relations. Recalling that X(T ) satisfies
equation (13.5), using the ansatz (13.12), and identifying the various powers
of δ, we have the following results.

Lemma 1. The following identities hold:

X
(0)
(T ) ≡ 0, (13.18)

−
dX

(1)
(T )

dy
= χχ

T
− γ in Y, (13.19)

X
(j+1)
(T ) = −(1− γ)X(j)

(T ) ∀j ∈ N∗. (13.20)

As direct consequences of this lemma we get the following corollary.

Corollary 1. The following relations are true:

X
(j)
(T ) = (−1)j−1(1− γ)j−1X

(1)
(T ) ∀j ∈ N∗,∫

Y

X
(j)
(T )X

(k)
(T ) = (−1)j+k(1− γ)j+k−2

∫
Y

(
X

(1)
(T )

)2 ∀j, k ∈ N∗.
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Using these results, let us prove the inequalities (13.8) and (13.9). On one
hand, since (13.13)–(13.15) and (13.18) hold, we easily deduce d(0) = d(1) = 0
and

d(2) = −q
(0)

|Y |

∫
Y

(
X

(1)
(T )

)2 ≤ 0.

Thus, we prove relations (13.8).
On the other hand, again using (13.18), formulas (13.16) and (13.17) be-

come

d(3) = − 1
|Y |
[
2q(0)

∫
Y

X
(1)
(T )X

(2)
(T ) + q(1)

∫
Y

(
X

(1)
(T )

)2]
,

d(4) = − 1
|Y |
[
2q(0)

∫
Y

X
(1)
(T )X

(3)
(T ) + q(0)

∫
Y

(
X

(2)
(T )

)2
+2q(1)

∫
Y

X
(1)
(T )X

(2)
(T ) + q(2)

∫
Y

(
X

(1)
(T )

)2]
.

Due to Corollary 1 and the expressions of q(j) given in (13.10)–(13.11), we get

d(3) = α0(2− 3γ)
1
|Y |

∫
Y

(
X

(1)
(T )

)2
, d(4) = −3α0(1− γ)(1− 2γ)

1
|Y |

∫
Y

(
X

(1)
(T )

)2
.

Then, it follows easily that d(3) ≥ 0 if and only if γ ≤ 2
3 and d(4) ≤ 0 if and

only if γ ≤ 1
2 , and we conclude the proof of inequalities (13.9).

Remark 3. The expressions of the coefficients d(i), i ∈ {2, 3, 4} depend on the

microstructure through the integral
∫
Y

(X(1)
(T ))

2.

One can give explicit formulas for these coefficients in some particular
cases. For instance, for a given n ∈ N∗, if we consider a multilayered mixture of

the two phases, that is, T =
n−1⋃
k=0

[
k
n |Y |,

k+γ
n |Y |

]
, then

∫
Y

(X(1)
(T ))

2 = |Y |3
12n2 γ

2(1−

γ)2. Therefore,

d(2) = − α0
12n2 |Y |2γ2(1− γ)2, d(3) = α0

12n2 |Y |2γ2(1− γ)2(2− 3γ),

d(4) = − α0
4n2 |Y |2γ2(1− γ)3(1− 2γ).

13.3 Optimal Bounds for the Burnett Coefficient

In this section, we assume that the periodic medium with two phases is a
general one. The purpose of this section is to find the set in which the dis-
persion coefficient d lies, as the microstructure varies, preserving the volume
proportion γ. Let us first observe that if γ ∈ {0, 1}, the dispersion coefficient
d is equal to 0. For this reason, we take γ ∈ (0, 1) in the sequel.

Let us introduce some notations. We denote by Char(Y ) the set of all
characteristic functions of measurable subsets of Y , and for any χχ ∈ Char(Y ),
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T (χχ) = {y ∈ Y : χχ(y) = 1}. For a given γ ∈ (0, 1), the set Cγ of classical
microstructures is given by

Cγ =
{
χχ ∈ Char(Y ) : |T (χχ)| = γ|Y |

}
.

In Char(Y ), we define the functional J0 as follows:

J0 : Char(Y ) −→ R, J0(χχ) def= m
(
(X(T (χ)))2

)
,

where m(f) denotes the average of f over Y and X(T (χ)) is the solution of
equation (13.5). Using this notation, the dispersion coefficient given in (13.4)
can be rewritten as d(χχ

T
) = −qJ0(χχT ); therefore, it is obvious that

−q sup
χ∈Cγ

J0(χχ) ≤ d(χχ
T
) ≤ −q inf

χ∈Cγ

J0(χχ) ∀χχ
T
∈ Cγ . (13.21)

When dealing with minimization and maximization problems involving
microstructures, of the form inf

χ∈Cγ

J0(χχ) and sup
χ∈Cγ

J0(χχ), it is known that they

do not, in general, admit solutions within the class of classical microstructures.
To overcome this, the proposed way is relaxation, which amounts to passage
from classical to generalized microstructures. The relaxation process in our
problem has been proved in [CSMSV], and we have obtained that

inf
χ∈Cγ

J0(χχ) = min
θ∈Dγ

J(θ), sup
χ∈Cγ

J0(χχ) = max
θ∈Dγ

J(θ). (13.22)

Here, Dγ represents the set of generalized microstructures defined by

Dγ =
{
θ ∈ L∞

# (Y ; [0, 1]) : m(θ) = γ
}
,

and the functional J is the extension of J0 over L∞
# (Y ; [0, 1]) defined as follows:

J : L∞
# (Y ; [0, 1]) −→ R, J(θ) def= m

(
(Xθ)2

)
,

where Xθ is the solution of the following relaxed version of the problem (13.5):⎧⎨⎩ −dXθ
dy

= 1− q(m(θ))
( θ
α1

+
1− θ
α0

)
in R,

Xθ ∈ H1
#(Y ), m(Xθ) = 0,

(13.23)

and q(·) is defined by 1
q(τ) = τ

α1
+ 1−τ

α0
.

Let us now state the main result of this section. We compute optimal lower
and upper bounds on the dispersion coefficient d(χχ) for all microstructures
χχ ∈ Cγ . Moreover, we go further and we prove that the dispersion coefficient
fills up an interval.

Theorem 2. For any γ ∈ (0, 1), the following equality holds:{
d(χ) : χ ∈ Cγ

}
=
[
− 1

12
q3γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
, 0
)
.
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In the remainder of the chapter, we give the main steps of the proof of
Theorem 2. For more details, we refer the reader to [CSMSV].

Step 1: Minimization of J on Dγ. Using the definition of J , it is
clear that J(θ) ≥ 0 for all θ ∈ Dγ . Moreover, there exists θ∗

min ∈ Dγ such
that J(θ∗

min) = 0, i.e., Xθ∗
min

= 0. More precisely, using (13.23), we get
θ∗
min(y) = γ. Thus, we obtain

min
θ∈Dγ

J(θ) = 0. (13.24)

Step 2: Maximization of J on Dγ. First of all, since Dγ is compact with
respect to the weak∗ topology on L∞(Y ) and J is continuous, maximizers for
J over Dγ do exist. To get information on them, since in our problem we have
the constraint m(θ) = γ, we use a Lagrange multiplier λ and introduce a
Lagrangian L(θ, λ) as follows:

L(θ, λ) = J(θ) + λ
(
m(θ)− γ

)
∀θ ∈ L∞

# (Y ; [0, 1]), ∀λ ∈ R. (13.25)

Generally, the optimality condition at a maximizer is expressed in terms
of the derivative of L. As a first step, we proceed to compute the derivative
via the introduction of the adjoint state equation: for all θ ∈ L∞

# (Y ; [0, 1]), let
Qθ be the solution of the problem⎧⎨⎩ −dQθ

dy
= 2q

(
1
α1
− 1
α0

)
Xθ in R,

Qθ ∈ H1
#(Y ), m(Qθ) = 0.

(13.26)

For a given θ∗ ∈ Dγ , we use this adjoint state equation with θ = θ∗ and we
get that, for all θ ∈ L∞

# (Y ; [0, 1]) and λ ∈ R,

D
θ
L(θ∗, λ)(θ − θ∗) = m

(
Qθ∗(θ − θ∗)

)
+
[
λ− q

( 1
α1
− 1

α0

)
m(Qθ∗θ∗)

]
m(θ − θ∗). (13.27)

In [CSMSV], we have proved that for each θ∗ ∈ Dγ with J(θ∗) = max
θ∈Dγ

J(θ),

there exists λ∗ ∈ R such that

D
θ
L(θ∗, λ∗)(θ − θ∗) ≤ 0 ∀θ ∈ L∞

# (Y ; [0, 1]). (13.28)

Using this property, we now state the following optimality condition.

Proposition 2. For each θ∗ ∈ Dγ with J(θ∗) = max
θ∈Dγ

J(θ), there exists p∗ ∈ R

such that the following optimality condition holds:⎧⎪⎨⎪⎩
θ∗ ∈ [0, 1] a.e. in A(θ∗, p∗),
θ∗ = 1 a.e. in B(θ∗, p∗),
θ∗ = 0 a.e. in C(θ∗, p∗),

(13.29)



www.manaraa.com

13 Burnett Coefficients in Periodic Media 131

where the sets A(θ∗, p∗), B(θ∗, p∗), and C(θ∗, p∗) are defined by

A(θ∗, p∗) = {y ∈ R : Qθ∗(y) = p∗}, (13.30)
B(θ∗, p∗) = {y ∈ R : Qθ∗(y) > p∗}, (13.31)
C(θ∗, p∗) = {y ∈ R : Qθ∗(y) < p∗}. (13.32)

Proof. Combining (13.27) and (13.28), we have∫
Y

(
Qθ∗(y)− p∗

)
(θ(y)− θ∗(y))dy ≤ 0 ∀θ ∈ L∞

# (Y ; [0, 1]),(13.33)

where p∗ = −λ∗ + q
( 1
α1
− 1
α0

)
m(Qθ∗θ∗). From the integral inequality (13.33),

we now deduce some pointwise information on θ∗. In the sequel, we prove
that θ∗ = 1 almost everywhere in B(θ∗, p∗)∩Y . To this end, we define the set
E =

{
y ∈ B(θ∗, p∗)∩Y : θ∗(y) < 1

}
and the function θE = θ∗ +(1− θ∗)χχ

E
.

Using this test function in inequality (13.33), we obtain∫
E

(
Qθ∗(y)− p∗)(1− θ∗(y))dy ≤ 0.

Since
(
Qθ∗(y)− p∗)(1− θ∗(y)) > 0 for all y ∈ E, we deduce that E is a null

set and so θ∗ = 1 almost everywhere in B(θ∗, p∗) ∩ Y .
Analogously, one can prove θ∗ = 0 almost everywhere in C(θ∗, p∗) ∩ Y .

Hence, by periodicity we get (13.29), and so the proposition is proved.

Using Proposition 2, we are now able to deduce a new expression of J
evaluated in those points θ∗ ∈ Dγ where the optimality condition (13.29)
holds. To this end, we define the set

Θγ =
{
θ∗ ∈ Dγ : there exists p∗ ∈ R such that (13.29) holds

}
. (13.34)

For any (θ∗, p∗) ∈ Θγ ×R such that (13.29) holds, the following properties
hold (for details, see [CSMSV]): for a given y

A
∈ A(θ∗, p∗) there exist two

collections of disjoint open intervals
{
(ai, bi)

}NB

i=1 and
{
(cj , dj)

}NC

j=1 such that

B(θ∗, p∗)∩ (y
A

+Y ) =
NB⋃
i=1

(ai, bi), C(θ∗, p∗)∩ (y
A

+Y ) =
NC⋃
j=1

(cj , dj), (13.35)

where NB, NC ∈ N∪{+∞} and ai, bi, cj , dj ∈ A(θ∗, p∗) for all i ∈ {1, . . . , NB},
j ∈ {1, . . . , NC}. Moreover, we have

NB∑
i=1

(bi − ai) ≤ γ|Y | and
NC∑
j=1

(dj − cj) ≤ (1− γ)|Y |. (13.36)

Thanks to this decomposition, we can give the new expression for J on
the set Θγ (for the proof of the following proposition, we refer the reader
to [CSMSV]).
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Proposition 3. For any (θ∗, p∗) ∈ Θγ × R such that (13.29) holds and y
A
∈

A(θ∗, p∗), we have

J(θ∗) =
q2

12|Y |

(
1
α1
− 1
α0

)2[
(1−γ)2

NB∑
i=1

(bi−ai)3 +γ2
NC∑
j=1

(dj−cj)3
]
. (13.37)

In particular, the above expression is valid at maximizers θ∗.

We now use the new expression of J given in Proposition 3 in order to
deduce that for all θ∗ ∈ Θγ , J(θ∗) is equal to

q2

12
γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
[
γ

NB∑
i=1

(bi − ai
γ|Y |

)3
+ (1− γ)

NC∑
j=1

( dj − cj
(1− γ)|Y |

)3
]
.

Then, due to inequalities (13.36), we deduce the following bound for all θ∗ ∈
Θγ :

J(θ∗) ≤ q2

12
γ2(1−γ)2|Y |2

( 1
α1
− 1
α0

)2
[
γ

NB∑
i=1

bi − ai
γ|Y | +(1−γ)

NC∑
j=1

dj − cj
(1− γ)|Y |

]
,

which implies

J(θ∗) ≤ q2

12
γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
∀θ∗ ∈ Θγ . (13.38)

Considering the function θ∗
max = χχ

[0,γ|Y |] ∈ Θγ , it is easy to see that

J(θ∗
max) =

q2

12
γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
. (13.39)

Finally, we combine (13.38) with (13.39) and we obtain max
θ∗∈Θγ

J(θ∗) =

1
12q

2γ2(1− γ)2|Y |2
(

1
α1
− 1

α0

)2
.

As a consequence of optimality condition (13.29), we have that all max-
imizers of J over Dγ lie in Θγ and so max

θ∈Dγ

J(θ) = max
θ∗∈Θγ

J(θ∗). Thus, we

get

max
θ∈Dγ

J(θ) =
1
12
q2γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
. (13.40)

It is surprising to find a classical microstructure θ∗
max as a maximizer. It

follows that J(θ∗
max) = J0(θ∗

max) = 1
12q

2γ2(1− γ)2|Y |2
( 1
α1
− 1

α0

)2.
Thus, using (13.22), (13.24), and (13.40) in (13.21), we conclude that{

d(χ) : χ ∈ Cγ
}
⊆
[
− 1

12
q3γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
, 0
)
.
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Step 3: Reverse inclusion. We refer the reader to our recent pa-
per [CSMSV] for the proof of the fact that for any real number D0 ∈[
− 1

12q
3γ2(1−γ)2|Y |2

( 1
α1
− 1
α0

)2
, 0
)
, there exists a composite material defined

by a characteristic function χχ ∈ Cγ such that d(χχ) = D0. That is,{
d(χ) : χ ∈ Cγ

}
⊇
[
− 1

12
q3γ2(1− γ)2|Y |2

( 1
α1
− 1
α0

)2
, 0
)
.

In consequence, we get that the dispersion coefficient fills up the above
interval and we conclude the proof of Theorem 2.
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Eigenelements of the Laplacian
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Bashkir State Pedagogical University, Ufa, Russia; gadylshin@yandex.ru

14.1 Introduction

We discuss the concept of singularly perturbed eigenvalue problems for the
Laplace operator.

Typical problems are the boundary value problems for the eigenvalue equa-
tions in bounded domains and the possible perturbations are a small param-
eter at higher derivatives, small holes, thin slits, thin appendices, frequent
alternation of boundary conditions, etc. The main feature of these problems
is that there exists no change of variables reducing them to problems in a fixed
domain with a regularly perturbed operator. At the same time, the eigenval-
ues of such singularly perturbed boundary value problems converge to those
of certain limiting problems. This is why, in the sense of convergence, the
eigenvalues behave in the regular way.

On the other hand, it is known that a regular perturbation of the wave-
guides can generate new eigenvalues. The opposite situation occurs for the

no eigenvalues, while the limiting one has. So, in both cases the eigenvalues
behave “nonregularly” in the sense of the convergence.

In what follows a problem that is singular in the first sense but regular in

is singular in the second sense but regular in the first one, it will be called
regular-singular. If the problem is regular in both senses, it will be called
twice-regular. And in the same way, a problem singular in both senses will be
called twice-singular.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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the second one will be called singular-regular. And vice versa, if a problem
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Helmholtz resonators and their analogues, when the perturbed problem has
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14.2 The Twice-Regular Case: The Schrödinger
Operator with a Large Potential Concentrated on a
Small Set

Let Ω be a connected bounded domain in Rn containing the origin and having
infinitely differentiable boundary Γ , n � 2, λ0 is a simple eigenvalue of a
boundary value problem

−Δψ0 = λ0ψ0 in Ω,
∂ψ0

∂n
= 0 on Γ, (14.1)

where n is the normal, and ψ0 is the associated eigenfunction normalized in
L2(Ω).

Consider a perturbed boundary value problem(
−Δ+ ε−αV

(x
ε

))
ψε = λεψε in Ω, ψε = 0 on Γ, (14.2)

where V ∈ C∞
0 (Ω), 0 < ε� 1.

The aim of this section is to describe the short scheme of the proofs of the
following statement on the base of the regular perturbation theory.

Theorem 1. Let α < 1 be an arbitrary fixed number. The asymptotics of the
eigenvalue λε of the boundary value problem (14.2) converging to λ0 as ε→ 0
is as follows:

λε = λ0 + εn−α (ψ2
0(0) 〈V 〉+ o(1)

)
, (14.3)

where
〈F 〉 =

∫
Rn

F (x)dx.

We denote by B(L2(Ω), L2(Ω)) (by B(L2(Ω), H2(Ω)) the Banach space
of linear operators from L2(Ω) to L2(Ω) (to H2(Ω)), and by Bhol(L2(Ω))
we indicate the set of holomorphic operator-valued functions with values in
B(L2(Ω), L2(Ω)).

We will employ the symbol A(λ) to indicate the linear operator mapping
a function g ∈ L2(Ω) into solution u0 of the boundary value problem,

−Δu0 = λu0 − g in Ω,
∂u0

∂n
= 0 on Γ. (14.4)

It is known (cf., for instance, [Ka66]), that for λ close to λ0 the operator A(λ)
can be represented as

A(λ) =
(•, ψ0)
λ− λ0

ψ0 + Ã(λ),

where
Ã(λ) ∈ Bhol(L2(Ω)), (14.5)
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and (•, •) indicates the scalar product in L2(Ω). Moreover, it follows from the
smoothness-improving theorems for the solutions of the problem (14.4) that

Ã(λ) ∈ B(L2(Ω), H2(Ω)). (14.6)

We denote by ‖•‖ and ‖•‖1 the norms in L2(Ω) and H1(Ω), respectively.
Let G be a bounded domain such that G ⊂ Ω, and let εG be a contraction

of the set G in ε−1 times. Employing the analogues of Hardy inequalities
in [OlIo92] and [OlSa91], it is easy to show that for any function u ∈ H1(Ω)
the inequality ∫

εG

|u|2dx � C1βn(ε)‖u‖21 (14.7)

holds true, where β2(ε) = ε2 |ln ε|, βn(ε) = ε2 as n � 3, and the constant C1
is independent of ε. By simple calculations one can derive from (14.6), (14.7)
the estimate ∫

εG

∣∣∣Ã(λ)g(x)
∣∣∣2 dx � C2βn(ε)‖g‖2. (14.8)

We denote by Vε the operator of multiplication by V (ε−1x) and let

Tε(λ) := ε−αVεÃ(λ).

The definition of Tε(λ), (14.5), and (14.8) yield

Tε(λ) ∈ Bhol(L2(Ω)), ‖Tε(λ)‖2 � C3ε
−2αβn(ε). (14.9)

We indicate
Sε(λ) := (I − Tε(λ))−1

,

where I is the identity mapping. Using (14.9), it is easy to check the following.

Lemma 1. Let α < 1. Then for λ sufficiently close to λ0 and ε → 0 the
function

Fε(λ) := −λ+ λ0 + ε−α (Sε(λ)Vεψ0, ψ0) (14.10)

a) has the unique zero λε which is of the first order;
b) λε has the asymptotics (14.4).

Proof of Theorem 1. We construct the solution to the boundary value
problem(

−Δ+ ε−αVε
)
uε = λuε − f in Ω, uε = 0, on Γ (14.11)

as
uε = A(λ)gε, (14.12)

where gε ∈ L2(Ω) is un unknown function. We substitute (14.12) in (14.11)
and take into account the definition of the operator A(λ) to obtain the equa-
tion for the function gε in the domain Ω:
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gε − ε−αVεA(λ)gε = f.

Applying the operator Sε(λ) to this equation, we obtain

gε − ε−αSε(λ)Vε
(gε, ψ0)
λ− λ0

ψ0 = Sε(λ)f. (14.13)

We multiply the last identity by the function ψ0 and integrate over Ω. As a
result we arrive at

(gε, ψ0) =
(λ− λ0) (Sε(λ)f, ψ0)

λ− λ0 − ε−α (Sε(λ)Vεψ0, ψ0)
.

We substitute the obtained expression for (gε, ψ0) into (14.13), which leads
us to the formula for the function gε:

gε = Sε(λ)f + ε−α
(Sε(λ)f, ψ0)Sε(λ)Vεψ0

λ− λ0 − ε−α (Sε(λ)Vεψ0, ψ0)
.

Now we substitute the last identity into (14.12) and see that the solution to
the boundary value problem (14.11) reads as follows:

uε =
(Sε(λ)f, ψ0)

(
ψ0 + Ã(λ)Sε(λ)Vεψ0

)
λ− λ0 − ε−α (Sε(λ)Vεψ0, ψ0)

+ Ã(λ)Sε(λ)f. (14.14)

Since the function f is arbitrary, this formula implies that the pole of the
function uε (being an eigenvalue of the boundary value problem (14.2)) and
its order coincide with the zero of the function (14.10) and its order. Now
Theorem 1 follows from Lemma 1. The proof is complete.

Since the residue of the solution uε at the pole is the eigenfunction, it fol-
lows from (14.14) that the eigenfunction of the boundary value problem (14.2)
can be represented as

ψε = ψ0 + Ã(λε)Sε(λε)Vεψ0.

A more detailed proof of Theorem 1 is given in [BiGa06].

14.3 The Singular-Regular Case: The Schrödinger
Operator with a Large Potential Concentrated on a
Small Set

The proof of Theorem 1 is essentially based on Lemma 1 for α < 1. In this
section we give the scheme of the proof of an analogue of Theorem 1 for α < 2,
and in this case it splits into two sufficiently independent parts. For simplicity,
we restrict ourselves to the three-dimensional case n = 3.
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The first part consists of the proof of the convergence of the eigenvalues of
the perturbed problem (14.2) to the eigenvalues of the limiting problem (14.1)
and of an estimate for the solution of the perturbed problem(

−Δ+ ε−αV
(x
ε

))
uε = λuε + fε in Ω,

∂uε

∂n
= 0 on Γ, (14.15)

for λ close to λ0. Moreover, the solutions of the boundary value prob-
lem (14.15), of the boundary value problem

−Δu0 = λu0 + f0 in Ω,
∂u0

∂n
= 0 on Γ,

and of the eigenvalue problems (14.1), (14.2) are treated in the weak sense.
Employing the estimate (14.7) under such an approach, it is possible to prove
the next statement.

Lemma 2. Let Q be an arbitrary compact set in the complex plane C con-
taining no eigenvalues of the problem (14.1). Then

1) there exists a number ε0 > 0 such that for any ε < ε0 and any λ ∈ Q
there exists a unique solution uε to the boundary value problem (14.15);

2) if ‖fε − f0‖ −→
ε→0

0, then the convergence

‖uε − u0‖1 −→
ε→0

0 (14.16)

holds true.

This lemma allows us to prove two statements which we formulate for a
simple eigenvalue of the limiting problem for the sake of brevity.

Theorem 2. Let λ0 be the simple eigenvalue of the boundary value prob-
lem (14.15), and ψ0 the associated eigenfunction normalized in L2(Ω). Then

1) there exists a unique eigenvalue λε of the boundary value problem (14.2)
converging to λ0 as ε→ 0, and this eigenvalue is simple;

2) for the associated eigenfunction ψε normalized in L2(Ω) the convergence
‖ψε − ψ0‖1 → 0 is valid as ε→ 0.

Lemma 3. Let the hypothesis of Theorem 2 hold true. Then for λ close to
λ0 the solution to the boundary value problem (14.15) satisfies a uniform in
ε and λ estimate

‖uε‖1 ≤
C

|λε − λ| ‖fε‖. (14.17)

If, in addition, (uε, ψε) = 0, then the uniform in ε and λ estimate

‖uε‖1 ≤ C‖fε‖ (14.18)

holds true.



www.manaraa.com

140 R.R. Gadyl’shin

The second part consists of constructing formal asymptotic expansions for
the eigenvalue λε and the eigenfunction ψε by the method of matching asymp-
totic expansions [Il92]. Employing this method, it is possible to construct the
asymptotic series

λε = λ0 +
∞∑
i=0

∞∑
j=1

εβ(i+1,j)λi,j , (14.19)

λ0,1 = ψ2
0(0) 〈V 〉 , (14.20)

ψε(x) = ψ0(x) +
∞∑
i=0

∞∑
j=1

εβ(i+1,j)ψi,j(x), (14.21)

ψε(x) =
∞∑
i=0

∞∑
j=0

εβ(i,j)vi,j

(x
ε

)
, (14.22)

where
β(i, j) = i+ (2− α)j,

which possesses the following property.

Lemma 4. Let α < 2, χ(s) be an infinitely differentiable cut-off function
being identically one as s < 1 and vanishing as s > 2, and let t be any fixed
positive number,

λεN := λ0 +
N∑
i=0

N∑
j=1

εβ(i+1,j)λi,j ,

ΨεN (x) :=
(
1− χ(ε−1/2t|x|)

)⎛⎝ψ0(x) +
N∑
i=0

N∑
j=1

εβ(i+1,j)ψi,j(x)

⎞⎠
+ χ(ε−1/2t|x|)

N∑
i=0

N∑
j=0

εβ(i,j)vi,j

(x
ε

)
.

(14.23)

Then
‖ΨεN‖ = 1 + o(1) as ε→ 0 (14.24)

and the function ΨεN is a solution to the boundary value problem(
−Δ+ ε−αV

(x
ε

))
ΨεN = λεNΨ

ε
N + F εN in Ω,

∂ΨεN
∂n

= 0 on Γ,

(14.25)
where

‖F εN‖ = O(εM(N)) (14.26)

and M(N) increases unboundedly as N →∞.
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Applying the estimate (14.17) for λ = λεN , fε = F εN , and uε = ΨεN , by the
identities (14.26) and (14.24), we obtain

|λε − λεN | = O(εM(N)). (14.27)

Since N is arbitrary, it implies that λε has the asymptotic expansion (14.19).
We note that the identities (14.19), (14.20) yield also formula (14.3) as n = 3
but for α < 2.

We represent ΨεN as

ΨεN (x) = aN (ε)ψε(x) + ψ⊥
ε,N (x) where (ψ⊥

ε,N , ψ
ε) = 0. (14.28)

Using (14.25), we write the boundary value problem for ψ⊥
ε,N and employ the

estimate (14.18) and the identities (14.26), (14.27), and (14.24). As a result
we obtain

‖ψ⊥
ε,N‖1 = O(εM(N)), aN (ε) = 1 + o(1).

Letting t = 2 in the definition (14.23) of the function ΨεN , by the iden-
tities (14.28) and the arbitrariness in the choice of N we obtain that in
Ω\{x : |x| < ε1/2} the eigenfunction ψε has the asymptotic expansion (14.21).
By analogy, letting t = 1

2 we obtain that for |x| < 2ε1/2 the eigenfunction
ψε has the asymptotic expansion (14.22). In particular, it follows that for
ε1/2 < |x| < 2ε1/2 each of the asymptotic expansions (14.21) and (14.22) is
valid.

A detailed statement is given in [Bi06].

14.4 The Regular-Singular Case: Regular Perturbation
of Quantum Waveguides

In this section we consider regular perturbations of the Dirichlet boundary
value problems:

−(Δ+ μ1)u0 = −k2u0 + g in Π, u0 = 0 on ∂Π (14.29)

in an n-dimensional cylinder Π = (−∞,∞)×Ω, where Ω ⊂ Rn−1 is a simply
connected bounded domain with C∞-boundary for n ≥ 3 and is an interval
(a, b) for n = 2. Hereinafter, μj and φj are the eigenvalues and eigenfunctions

of −Δ′ := −
(
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)
in Ω subject to the Dirichlet boundary con-

dition on ∂Ω, μ1 < μ2 � · · · . The functions φj are assumed to be normalized
in L2(Ω). It is known that unperturbed boundary value problems

−(Δ+ μ1)ψ0 = λ0ψ0 in Π, ψ0 = 0 on ∂Π

have no eigenfunctions. At the same time eigenfunctions and eigenvalues
(bound states) can emerge under perturbations. Such boundary value prob-
lems are a mathematical model describing a quantum waveguide. We study
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the questions on the existence and absence of such emerging eigenvalues and
the construction of their asymptotic expansions. The regular perturbation
treated in this section is performed by a small localized linear operator of sec-
ond order. An example of such an operator is a small complex potential as well
as other perturbations considered in [Ga021] for the Schrödinger operator on
the axis. Other examples are small deformations of strips and cylinders which
can be reduced to the case we consider by a change of variables [BuGe97],
[BoEx01], [DuEx95], [ExVu97].

Hereinafter H loc
j (Π) is a set of functions defined on Π whose restriction

to any bounded domain D ⊂ Π belongs to Hj(D), and ‖ • ‖G and ‖ • ‖j,G are
norms in L2(G) and Hj(G), respectively. Next, let Q = (−R,R) × Ω, where
R > 0 is an arbitrary fixed number, L2(Π;Q) be the subset of functions in
L2(Π) with supports in Q, and let Lε be linear operators mapping H loc

2 (Π)
into L2(Π;Q) such that ‖Lε[u]‖Q ≤ C(L) ‖u‖2,Q, where constant C(L) is
independent of ε, 0 < ε� 1.

We study the existence and the asymptotics of the eigenvalues of the fol-
lowing Dirichlet problem:

−(Δ+ μ1 + εLε)ψε = λεψε in Π, ψε = 0 on ∂Π. (14.30)

For a small complex k, we define a linear operator

A(k) : L2(Π;Q) → H loc
2 (Π)

as

A(k)g :=
φ1(x′)

2k

∫
Π

e−k|x1−t1|φ1(t′)g(t) dt+ Ã(k)g,

Ã(k)g :=
∞∑
j=2

φj(x′)
2Kj(k)

∫
Π

e−Kj(k)|x1−t1|φj(t′)g(t) dt,
(14.31)

where x′ = (x2, ..., xn), andKj(k) =
√
μj − μ1 + k2. By analogy with [Ga021]

for f ∈ L2(Π;Q), we seek a solution of the boundary value problem

− (Δ+ μ1 + εLε)uε = −k2uε + f, in Π, uε = 0 on ∂Π (14.32)

as
uε = A(k)gε, (14.33)

where gε ∈ L2(Π;Q). By definition, (14.33) is the solution of the boundary
value problem (14.29) for g = gε. Substituting (14.33) into (14.32), we obtain
that (14.33) gives a solution for (14.32) if

(I − εLεA(k))gε = f, (14.34)

where I is identity mapping.
Assume Lε[φ1] �= 0 and denote
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Tε(k)g :=Lε[A(k)g]− 〈gφ1〉
2k

Lε[φ1],

Sε(k) := (I − εTε(k))−1
. (14.35)

Applying the operator Sε(k) to both sides of the equation (14.34), we obtain
that (

gε − ε
〈gεφ1〉

2k
Sε(k)Lε[φ1]

)
= Sε(k)f, (14.36)

〈gεφ1〉
(
1− ε

2k
〈φ1Sε(k)Lε[φ1]〉

)
= 〈φ1Sε(k)f〉 . (14.37)

The equality (14.37) allows us to determine 〈gεφ1〉. Substituting its value
into (14.36), we easily get the formula

gε = ε
2k 〈Sε(k)f〉Sε(k)Lε[φ1]
2k − ε 〈φ1Sε(k)Lε[φ1]〉

+ Sε(k)f. (14.38)

Formulas (14.38) and (14.33) imply that, if kε is a solution of the equation

2k − ε 〈φ1Sε(k)Lε[φ1]〉 = 0, (14.39)

then the residue of (14.33) at kε:

ψε = A(kε)Sε(kε)Lε[φ1] (14.40)

is the solution of the boundary value problem (14.30), where

λε = −k2
ε . (14.41)

Due to (14.35) the equation (14.39) has a unique small solution with the
asymptotics

kε = ε
1
2
〈φ1Lε[φ1]〉+O

(
ε2
)
. (14.42)

The formulas (14.31), (14.40) yield that if Re kε < 0, then ψε /∈ L2(Π)
and, hence, λε is not the eigenvalue, and if Re kε > 0, then ψε ∈ L2(Π) and,
hence, λε is the eigenvalue. In the last case due to (14.41) and (14.42) this
eigenvalue has the asymptotics

λε = −ε2 1
4
〈φ1Lε[φ1]〉2 +O

(
ε3
)
.

In particular, the formula (14.42) allows us to maintain that in the case
〈φ1Lε[φ1]〉 ≥ δ > 0 there exists a small eigenvalue.

If Lε[φ1] = 0, due to (14.31), (14.33), and (14.34) it follows that the pole
kε of (14.33) is equal to zero and gε → f as ε → 0. Thus, there is no small
eigenvalue in this case.

A more detailed proof and examples are given in [Ga05].
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14.5 The Twice-Singular Case: Regular Perturbation of
a Quantum Waveguide

14.5.1 Convergence of Poles and Representation of a Solution
Near Poles

Assume for simplicity in describing the perturbations that the domain Ω
coincides with the half-space xn > 0 in some neighborhood of the origin (in
variables x′), ω is an (n− 1)-dimensional bounded domain in the hyperplane
xn = 0 having smooth boundary, ωε = {x : xε−1 ∈ ω}, Γε = ∂Π\ωε. For a
given f ∈ L2(Π;Q), we consider the following singularly perturbed boundary
value problems:

−(Δ+ μ1)uε =− k2uε + f in Π,

uε =0 on Γε,
∂uε
∂n

= 0 on ωε.
(14.43)

Let ΓR0 = ∂Π ∩ ∂Q, ΩR = ∂Q\ΓR0 , ΓRε = ΓR\ωε. For each V ∈ H2(Q),
we denote by

σε : H2(Q) → H1(Q)

the inverse operator for the following boundary value problems:

ΔWε = ΔV in Q, Wε = V, on ΩR,

Wε = 0 on ΓRε ,
∂Wε

∂n
= 0 on ωε.

Let χ±(x1) be an infinitely differentiable mollifier function equalling one for
±x1 ≤ R/2 and vanishing for ±x1 ≥ R, Π± = {x : x ∈ Π, ±x1 > 0}, p± be
the restriction operator from Π to Π±, and let pQ± be the restriction operator
from Π± to Π± ∩Q. Denote

Ã±(k)g± :=
∞∑
j=2

φj(x′)
2Kj(k)

∫
Π±

(
e−Kj(k)|x1−t1| − e−Kj(k)|x1+t1|

)
φj(t′)g±(t) dt,

A±(k)g± :=
φ1(x′)

2k

∫
Π±

(
e−k|x1−t1| − e−k|x1+t1|

)
φ1(t′)g±(t) dt+ Ã±(k)g±

for x ∈ Π±, and

Aε(k)g :=(1− χ+)A+(k)p+g + (1− χ−)A−(k)p−g

+ χ+χ−σε
(
pQ+A+(k)p+g + pQ−A−(k)p−g

)
,

for g ∈ L2(Π;Q).
We construct the solution of (14.43) in the form
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uε = A(m)
ε (k)gε, (14.44)

where gε is a function belonging to L2(Π;Q). Substituting (14.44) into (14.43),
by analogy with [Sa80] we deduce that this function is a solution of (14.43)
in the case

gε = (I + Tε(k))−1f, (14.45)

where, for any fixed ε, Tε(k) is a holomorphic operator-valued function and,
for any fixed k, Tε(k) is a compact operator in L2(Π;Q). An analysis of this
family with respect to ε (which is similar to [Ga022] and based on [Sa80]) and
the representations (14.44), (14.45) imply that there exists one pole kε → 0 of
the solution of (14.43), and for small k, this solution meets the representation

uε(x, k) =
ψε(x)

2 (k − kε)

∫
Π

ψε(y) f(y) dy + ũε(x, k), (14.46)

where
‖ũε‖1,D � C(D,Q)‖f‖Π (14.47)

for any bounded domain D ⊂ Π.
The residue ψε at this pole is a solution to the boundary value problem

−(Δ+ μ1)ψε =λεψε in Π,

ψε =0 on Γε,
∂ψε
∂n

= 0 on ωε,
(14.48)

where λε defined by (14.41) and for any fixed x1 converges to φ1 as ε → 0.
This convergence, the representation (14.44), and the definition ofAε(k) imply
that

ψε(x) = aεφ1(x′)e−|x1|k(m)
ε + o

(
e−|x1|δ

)
as |x1| → ∞,

where δ > 0 is some fixed number and

aε = 1 + o(1) as ε→ 0.

In part, these asymptotics imply that there exists eigenvalue λε provided

Re kε > 0. (14.49)

Thus, in fact we need to construct and to justify asymptotics of the pole
kε which generates the eigenvalue or does not. As mentioned above in the case
of regular perturbation, the asymptotics for the pole can obtained by simple
calculations in (14.39), whereas while dealing with singular perturbation, we
have no such equation. On the other hand, the representation (14.46) and
the estimate (14.47) allow us to justify the method of matching asymptotic
expansions in constructing the asymptotics for the poles kε and for the residue
ψε.

The formal construction of complete asymptotics of poles for the boundary
value problems (14.43) and for Helmholtz resonator [Ga93]–[Ga97] is similar.
That is why in what follows we will construct first perturbed terms of poles
only.
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14.5.2 Asymptotics of Eigenvalues

Let Sn be the unit sphere in Rn, let G(x, y, k) be the Green’s function of the
unperturbed Dirichlet boundary value problem in Π:

−(Δ+ μ1)G(x, y, k) =− k2G(x, y, k) + δ(x− y) in Π,

G(x, y, k) =0 on Γε,
∂G(x, y, k)

∂n
= 0 on ωε,

and
Φ =

∂

∂xn
φ1(x′)|x′=0,

Ψ(x, k) =− 2kΦ−1 ∂

∂yn
G(x, y, k)|y=0.

By definition Φ �= 0 and

Ψ(x, k) → φ1(x′) as k → 0 for any fixed x �= 0, (14.50)

Ψ(x, k) = Φxn +
4k
Φ|Sn|

xn
rn

+O
(
kr−n+2) as r = |x| → 0, k → 0. (14.51)

Taking into account (14.50), outside the small neighborhood of ωε we
construct the residue ψε in the form

ψε(x) ∼ Ψ(x, kε).

Near ωε we construct asymptotics by using the method of matching asymp-
totic expansions [Il92], [Ga93]–[Ga97] in the variables ξ = ε−1x. The structure
of the expansions of ψε in this zone and of the pole kε are inspired by the
following consideration. When x = εξ and k = kε, both terms on the right-
hand side of (14.51) must have the same order with respect to ε. This degree
determines the first term in the interior layer for ψε, while the right-hand side
of (14.51) (rewritten in variables ξ and for k = kε) determines the asymptotics
of this term as ρ = |ξ| → ∞. For these reasons we construct the asymptotics
as

kε = εnτn + . . . , ψε(x) = εv1(ξ) + . . . , (14.52)

v1(ξ) = Φξn + 4τn (Φ|Sn|)−1
ξnρ

−n + o
(
ρ−n+1) , ρ→∞. (14.53)

Substituting (14.52) in (14.48) for λε defined by (14.41), we obtain the bound-
ary value problem for v1:

Δξv1 =0 for ξn > 0,

v1 =0 on Γ (ω),
∂v1
∂ξn

= 0 on ω,
(14.54)

where Γ (ω) = {ξ : ξn = 0, ξ /∈ ω}. It is known that there exists a solution
Xn of (14.54) with asymptotics
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Xn(ξ) = ξn + cn(ω)ξnρ−n + o
(
ρ−n+1) as ρ→∞,

where cn(ω) > 0. Thus, it follows from (14.53) that

v1(ξ) = ΦXn(ξ), τn =
1
4
cn(ω)|Sn|Φ2 > 0. (14.55)

By (14.52) and (14.55) we have Re kε > 0 and, hence, there exists an eigen-
value (see (14.49)) and it has the asymptotics (see (14.41))

λε = −ε2n
(
cn(ω)|Sn|Φ2

4

)2

+ o
(
ε2n
)
.

14.6 Concluding Remarks

The eigenvalues of boundary value problems are the poles of the corresponding
solutions. If one treats the problems considered above as a perturbation of the
poles of the solutions of these problems and their analytic continuations, then
the poles exist both for the perturbed and limiting boundary value problems.
Moreover, the poles of the perturbed problems converge to those of the limiting
problems, as in Sections 14.2 and 14.3, or to those of the analytic continuations
of the solutions of the limiting problems, as in Sections 14.4 and 14.5. So, from
the point of view of the perturbation of the poles, no new poles emerge. They
simply correspond to the eigenvalues in some cases and do not in others (as
in Section 14.4 for Re kε < 0). From this point of view, all the considered
problems are regular. The same situation holds for the Helmholtz resonator
and its analogues [Ga022]–[Ga97], where the pole of the solution of the limiting
problem corresponds to an eigenvalue, while that of the analytic continuation
of the solution of the perturbed problem does not.

Acknowledgement. This work is supported by RFBR and by the grant of the Pres-
ident of Russia for leading scientific schools (NSh-2215.2008.1).
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15.1 Introduction and Statement of the Problem

Let Ω be an open bounded domain of R3

assume that Ω is divided into two parts Ω+ and Ω− by the plane γ: Ω =
Ω+ ∪Ω− ∪ γ. For simplicity, we assume that the plane {x3 = 0} cuts Ω and
γ = Ω ∩ {x3 = 0}. Let ε be a small positive parameter that tends to zero.
We denote by ωε the ε-neighborhood of γ, i.e., ωε = Ω ∩ {|x3| < ε}; for ε
sufficiently small, we assume that ωε = γ × (−ε, ε) (see Figure 15.1). Note
that this conditions the geometry of Ω near γ. Let us denote by x̄ the two
first components of any x = (x1, x2, x3) ∈ R3, that is, x̄ = (x1, x2).

Fig. 15.1. A geometrical configuration.

We consider the eigenvalue problem{
−Δuε = λερεu

ε in Ω
uε = 0 on ∂Ω , (15.1)
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with a smooth boundary ∂Ω. We
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where ρε is the density function

ρε(x) =
{
p if x ∈ Ω \ ωε
qε−m if x ∈ ωε

for m a positive parameter, and p and q positive constants. We assume m > 1.
The spectral problem deals with the vibrations of a system composed of a body
that contains a thin region where the density is much higher than elsewhere,
the so-called concentrated mass along planes: the size and the density of the
region ωε are of order O(ε) and O(ε−m), respectively, while they are of order
O(1) outside.

The variational formulation of (15.1) is: Find λε and uε ∈ H1
0 (Ω), uε �= 0,

satisfying∫
Ω

∇uε · ∇v dx=λε
[∫
Ω\ωε

puεv dx+
1
εm

∫
ωε

quεv dx

]
, ∀v ∈ H1

0 (Ω). (15.2)

For each fixed ε > 0, problem (15.2) is a standard eigenvalue problem in
H1

0 (Ω). Let us consider {λεi}
∞
i=1 the sequence of eigenvalues of (15.2), with the

classical convention of repeated eigenvalues. Let {uεi}∞
i=1 be the corresponding

eigenfunctions, which form an orthonormal basis in H1
0 (Ω), that is,∫

Ω

∇uεi · ∇uεj dx = δi,j for i, j = 1, 2 . . . . (15.3)

The aim of this chapter is to study the asymptotic behavior of certain eigenele-
ments (λε, uε) of (15.1) as ε→ 0.

15.1.1 Preliminary Results

Many authors have addressed the asymptotic behavior of vibrating systems
with concentrated masses at points (cf. [LoPe03] for references), but only a few
of them consider vibrating systems with concentrated masses on manifolds.
See [GoGo02] and [GoGo04] for the vibrations of a membrane with a con-
centrated mass around a curve; [GoLo06] for problems with stiff regions and
concentrated masses along curves where very different techniques are used.
For dimension three, the only references are [Tc84], for m = 1, and [GoLo05],
for m > 1, regarding the low frequencies.

First, we introduce two inequalities which will be useful throughout the
chapter: ∫

ωε

|u|2 dx ≤ Cε‖u‖2H1(Ω), ∀u ∈ H1(Ω) (15.4)

and∣∣∣∣1ε
∫
ωε

uv dx− 2
∫
γ

uv dx̄

∣∣∣∣≤Cε1/2‖u‖H1(Ω)‖v‖H1(Ω), ∀u, v ∈ H1(Ω), (15.5)
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where C is a constant independent of ε, u, and v. Let us refer to [MaHr74]
for the proof of (15.4), whereas the inequality (15.5) holds from (15.4) (see
also [Tc84]).

We obtain the following bound for the eigenvalues of (15.1).

Lemma 1 For each fixed i = 1, 2, 3 . . ., and ε sufficiently small, we have

Cεm−1 ≤ λεi ≤ Ciεm−1 for m > 1 (15.6)

where C,Ci are constants independent of ε and Ci →∞ when i→∞.

Proof. The left-hand side of (15.6) holds easily from the variational formula-
tion (15.2), the Poincaré inequality, and (15.4), that is,

λεi ≥
∫
Ω
|∇uεi |2 dx∫

Ω
p|uεi |2 dx+ ε−m

∫
ωε
q|uεi |2 dx

≥
∫
Ω
|∇uεi |2 dx

K1
∫
Ω
|∇uεi |2 dx+ ε1−mK2

∫
Ω
|∇uεi |2 dx

≥ Cεm−1,

where K1,K2, C are constants independent of ε.
On the other hand, the minimax principle gives the equality

λεi = min
Ei ⊂ H1

0 (Ω)
dimEi = i

max
v ∈ Ei
v �= 0

∫
Ω
|∇v|2 dx∫

Ω\ωε
p|v|2 dx+ ε−m

∫
ωε
q|v|2 dx, (15.7)

where the minimum is taken over all the subspaces Ei ⊂ H1
0 (Ω) with

dimEi = i. For each fixed i, let us consider E∗
i the subspace of H1

0 (Ω),
E∗
i = [u1, . . . , ui], where {ui}∞

i=1 are the eigenfunctions of (15.10) which are
assumed to be orthonormal in H1

0 (Ω). Then, taking in (15.7) the particular
subspace E∗

i , we obtain

λεi ≤ max
v ∈ E∗

i

v �= 0

∫
Ω
|∇v|2 dx∫

Ω\ωε
p|v|2 dx+ ε−m

∫
ωε
q|v|2 dx ≤ max

v ∈ E∗
i

v �= 0

∫
Ω
|∇v|2 dx

ε−m
∫
ωε
q|v|2 dx.

(15.8)
From the orthogonality condition of the eigenfunctions ui in H1

0 (Ω) and in
L2(γ), we have

2q
∫
γ

|v|2 dγ ≥ 1
λi
‖∇v‖2L2(Ω), ∀v ∈ E∗

i ,

and, using (15.5), we get

1
ε

∫
ωε

q|v|2 dx ≥ 1
λi
‖∇v‖2L2(Ω) − Cε1/2‖∇v‖2L2(Ω), ∀v ∈ E∗

i .

Now, by introducing this inequality in (15.8) we obtain the right-hand side
of (15.6) and the lemma is proved.
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Estimate (15.6) allows us to state the spectral concentration phenomena
at the origin for the low frequencies, a rescaling being necessary to detect their
asymptotic behavior. Theorem 1 in Section 15.2 characterizes this behavior
via the eigenelements of the problem⎧⎪⎪⎨⎪⎪⎩

Δu = 0 in Ω+ ∪Ω−,

[u] = 0,
[
∂u

∂x3

]
+ λ 2qu = 0 in γ,

u = 0 on ∂Ω,

(15.9)

where the brackets mean the jump of the enclosed quantities across γ, that
is, [v] = v(x̄, 0+)− v(x̄, 0−) for x̄ ∈ γ.

As happens in other vibrating systems with concentrated masses, form>1,
the high frequencies, namely the eigenvalues λε = O(εα) with α<m−1, accu-
mulate in the whole positive real axis [0,∞). We refer to [GoLo99] for a proof
of this result using spectral families for systems with a concentrated mass at
a point. See [CaZu96] for a general result for self-adjoint and compact oper-
ators, where ε ranges in certain subsequences. For brevity, on account of the
results of Section 15.2, in Section 15.3, we use the result in [CaZu96] to prove
the existence of converging sequences of eigenvalues λεi(ε) for problem (15.1)
with m > 1. See [GoGo04] for the results related to a vibrating membrane
with a concentrated mass along a curve.

Depending on the value of m > 1, there are different behaviors of
these eigenvalues of higher order and their corresponding eigenfunctions. For
brevity, here we provide the detailed proof for m = 3 and the frequencies of
order O(1): see Theorems 2, 3, and 4 in Section 15.3. The limiting problem
for these high frequencies was outlined in [GoLo07] without any proof. We
leave the asymptotics for the so-called middle frequencies for a forthcoming
publication.

For completeness, we summarize in Section 15.2 the results for the low
frequencies; see [GoLo05] for details.

15.2 Low Frequencies

In this section, we address the asymptotic behavior, as ε→ 0, of the eigenval-
ues λεi of problem (15.1) for i fixed and of the corresponding eigenfunctions
uεi .

For m > 1, let us assume the asymptotic expansions

λεi = λiε
m−1 + o(εm−1) and uεi = ui + o(1) in H1

0 (Ω)− weak,

for some real λi and some function in H1
0 (Ω) ui, ui �= 0. Then, taking limits in

the variational formulation (15.2) when ε→ 0 and using (15.5), we can identify
(λi, ui) as an eigenelement of the following problem: Find λ and u ∈ H1

0 (Ω),
u �= 0, such that
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Ω

∇u · ∇v dx = λ 2
∫
γ

quv dx̄, ∀v ∈ H1
0 (Ω), (15.10)

which is the integral formulation of the Steklov-type eigenvalue problem (15.9).
Problem (15.10) has a real, positive, and discrete spectrum. Let us denote

by {λi}∞
i=1 the sequence of eigenvalues of (15.10), with the usual convention

of repeated eigenvalues, and by {ui}∞
i=1 the associated eigenfunctions.

Theorem 1 states the convergence of the eigenvalues λεi of (15.2) and their
corresponding eigenfunctions. Previously, we introduce some operators asso-
ciated with problems (15.2) and (15.10).

Let Hε = H be the space H1
0 (Ω). Let us consider Aε the positive, self-

adjoint and compact operator defined on Hε by Aεf = uε, where uε ∈ H1
0 (Ω)

is the unique solution of∫
Ω

∇uε·∇v dx = εm−1
∫
Ω\ωε

pfv dx+ε−1
∫
ωε

qfv dx, ∀v ∈ H1
0 (Ω). (15.11)

The eigenvalues of Aε are {εm−1/λεi}∞
i=1, where {λεi}∞

i=1 are the eigenvalues
of (15.2).

In the same way, we consider A the self-adjoint and compact operator
defined on H by Af = u, where u ∈ H1

0 (Ω) is the unique solution of∫
Ω

∇u · ∇v dx = 2
∫
γ

qfv dx̄, ∀v ∈ H1
0 (Ω). (15.12)

The eigenvalues of A are {1/λi}∞
i=1 ∪ {0}, where {λi}∞

i=1 are the eigenvalues
of (15.10) with finite multiplicity, whereas λ = 0 is an eigenvalue of infinite
multiplicity; the eigenspace associated with λ = 0 is W = {v ∈ H1

0 (Ω) : v =
0 on γ}.

Let H0 be the orthogonal complement of W in H1
0 (Ω) and let Rε be the

identity operator from H0 to Hε. By definition of the operator A, ImA ⊂ H0;
we consider A0 : H0 → H0 the restriction operator of A. Now, A0 is a positive,
self-adjoint, and compact operator whose eigenvalues are {1/λi}∞

i=1, where
{λi}∞

i=1 are the eigenvalues of (15.10).

Theorem 1. Let λεi be the eigenvalues of problem (15.2) and uεi the corre-
sponding eigenfunctions such that ‖∇uεi‖L2(Ω) = 1. If m > 1, for each i fixed,
the sequence λεi/ε

m−1 converges, when ε → 0, towards λi, the ith eigenvalue
of (15.10). Moreover, for any eigenvalue λi of (15.10) with multiplicity κ

(λi = λi+1 = · · · = λi+κ−1) and for any eigenfunction u of (15.10) associ-
ated with λi such that ‖∇u‖L2(Ω) = 1, there exists a linear combination ũε of
eigenfunctions associated with {λεk}i+κ−1

k=i such that ũε converges towards u in
H1(Ω).

In addition, for each sequence uεi we can extract a subsequence, still denoted
by ε, such that uεi converges towards u∗

i in H1
0 (Ω), where u∗

i is an eigenfunction
of (15.10) associated with λi, and {u∗

i }∞
i=1 form an orthonormal basis in the

orthogonal complement of {v ∈ H1
0 (Ω) : v|γ = 0} in H1

0 (Ω).
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Sketch of the proof. For each ε > 0 and fixed f ∈ H0, we consider uε = AεRεf ;
uε ∈ H1

0 (Ω) verifies (15.11). Taking limits in (15.11) and using (15.5) we
obtain that uε converges to u∗ strongly in H1

0 (Ω) when ε → 0, where u∗

verifies (15.12), that is, u∗ = A0f . Thus, applying the spectral convergence
theorem for positive, symmetric, and compact operators on a varying Hilbert
space (cf. Section III.1 in [OlSh92]), the convergence of the eigenvalues holds
as the theorem states.

As regards the proof of the last statement in the theorem, we refer
to [GoLo05] for further details.

Remark 1. The above theorem is related to the low frequencies of (15.1) for
m > 1. Our technique also applies to the case 0 < m ≤ 1; then, the eigenvalues
λεi are of order O(1) (cf. Lemma 1) and the limiting problem is different
(see [Tc84] for the case m = 1 and different techniques).

15.3 Frequencies of Higher Order

The aim of this section is to study the asymptotic behavior, as ε→ 0, of the
eigenvalues of (15.1) of higher order than O(εm−1) form > 1; that is, converg-
ing sequences λεi(ε) of order O(εα) for α < m − 1. In particular, we focus on
the asymptotic behavior of the eigenvalues λε of order O(1) of problem (15.1)
for m = 3 and of the corresponding eigenfunctions uε.

For completeness, we first introduce two general results for self-adjoint
and compact operators. Lemma 2 is related to the spectral convergence for
large frequencies (see [CaZu96] for the proof). Lemma 3 is related to “almost
eigenvalues and eigenfunctions” from the spectral perturbations theory; we
refer to Section III.1 in [OlSh92] for the proof.

Lemma 2 Let {T ε}ε∈[0,1] be a family of self-adjoint and compact operators
on a Hilbert space H. For each ε, let {μεi}∞

i=1 be the sequence of the eigenvalues
of T ε with the classical convention of repeated eigenvalues. Let us assume that
the family T ε satisfies the following property: for each i ∈ N the function
μi(ε) = μεi is continuous with respect to ε in [0, 1]. Then, for each β > 0
and λ > 0 there exists a sequence εj → 0 and a sequence of natural numbers

{i(εj)}j∈N, i(εj) →∞, such that
(
μ
εj

i(εj)

)−1
εβj = λ.

Lemma 3 Let A : H −→ H be a linear, self-adjoint, positive, and compact
operator on a Hilbert space H. Let u ∈ H, with ‖u‖H = 1 and λ, r > 0 such
that ‖Au − λu‖H ≤ r. Then, there exists an eigenvalue λi of A satisfying
|λ − λi| ≤ r. Moreover, for any r∗ > r there is u∗ ∈ H, with ‖u∗‖H = 1, u∗

belonging to the eigenspace associated with all the eigenvalues of operator A
lying on the segment [λ− r∗, λ+ r∗], such that

‖u− u∗‖H ≤
2r
r∗
.
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We observe that the operators Aε for ε ∈ (0, 1) and A, defined in Sec-
tion 15.2, verify the conditions of Lemma 2 for μεi = εm−1/λεi with λεi eigen-
values of (15.1). Thus, if m > 1, for each α < m − 1 and λ > 0, there exists
a sequence εj → 0 and a sequence of natural numbers {i(εj)}j∈N, i(εj) →∞,
such that

λ
εj

i(εj)
/εαj = λ.

In particular, if α = 0, we have that for any λ > 0 there exists a subsequence
of eigenvalues λεj

i(εj)
of (15.1) converging towards λ as εj → 0. For simplicity,

we still denote by ε this subsequence.
As we verify in Section 15.3.1 for α = 0, for certain sequences of eigenvalues

λεi(ε) = O(εα) with α < m−1, there is a different behavior of the corresponding
eigenfunctions according to whether the values λεi(ε)/ε

α are asymptotically
near eigenvalues of certain problems or not. In fact, for m = 3, different limit
behaviors are obtained for the eigenfunctions associated with the eigenvalues
λε = O(ε) and λε = O(1). In the rest of the section, we address the asymptotic
behavior of the eigenfunctions uε associated with eigenvalues λεi(ε) of order
O(1) under the assumption that the eigenfunctions uε satisfy (15.3).

15.3.1 The Case m = 3 and Frequencies of Order O(1)

Let us first proceed formally. We consider the asymptotic expansions

λε = λ+ o(1) and uε = u+ o(1) in H1
0 (Ω)

with λ �= 0. Then, replacing these expansions in (15.1), we get the Dirichlet
problem {

−Δu = λ pu in Ω+ ∪Ω−,

u = 0 in ∂Ω ∪ γ. (15.13)

We notice a different behavior of the eigenfunctions associated with eigen-
values λε of order O(1) depending on whether they are close to eigenvalues
of (15.13) or not. Next, we state the convergence results describing this be-
havior.

Theorem 2. Let λεi be the eigenvalues of (15.1) and uεi the corresponding
eigenfunctions such that ‖∇uεi‖L2(Ω) = 1. Let us assume that λεi(ε) → λ,
as ε → 0, and the corresponding eigenfunctions uεi(ε) converge towards u in
H1

0 (Ω)-weak.

i) If u �= 0, then (λ, u) is an eigenelement of (15.13).
ii) If (λ, u) is not an eigenelement of (15.13), then uεi(ε) converge towards 0

in L2(Ω) as ε→ 0.

Proof. First, we prove that u = 0 on γ. Since (λε, uε) satisfy (15.2) and λε

and ‖∇uε‖L2(Ω) are bounded, it follows that
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1
ε

∫
ωε

|uε|2 dx ≤ Cε2, (15.14)

where C is a constant independent of ε. Then, using (15.5) and the weak
convergence in H1

0 (Ω) of uε towards u as ε→ 0 yields that u vanishes on γ.
Thus, if u �= 0 in Ω+ (Ω− resp.), taking limits in (15.2) for v ∈ D(Ω+)

(v ∈ D(Ω−) resp.), we obtain that (λ, u) is an eigenelement of the Dirichlet
problem in Ω+ (Ω− resp.) and statement i) is proved.

Statement ii) holds by contradiction, and the proof is complete.

Theorem 3. Let us consider λ>0 and {dε}ε any sequence such that dε → 0
as ε → 0. Let {λεi(ε), λεi(ε)+1, . . . , λ

ε
i(ε)+k(ε)} be all the eigenvalues of (15.1)

in the interval [λ − dε, λ + dε], and ũε any function in the eigenspace
[uεi(ε), u

ε
i(ε)+1, . . . , u

ε
i(ε)+k(ε)] with ‖∇ũε‖L2(Ω) = 1.

i) If there is some converging subsequence {ũεk}k such that ‖ũεk‖L2(Ω) >
a > 0, for some constant a independent of εk, then (λ, u∗) is an eigenele-
ment of (15.13), where u∗ is the limit of {ũεk}k as εk → 0.

ii) If λ is not an eigenvalue of (15.13), then ũε converge towards 0 in L2(Ω)
as ε→ 0.

The assertions hold in view of Theorem 2 with minor modifications
(see [GoLo99] for the technique).

Theorem 4. Let λ be an eigenvalue of problem (15.13) and u an associated
eigenfunction such that ‖∇u‖L2(Ω) = 1. Then, there are eigenvalues λεi(ε) of
problem (15.1) such that

|λεi(ε) − λ| ≤ Cε1/2, (15.15)

where C is a constant independent of ε. Moreover, there is a linear com-
bination ũε ∈ H1

0 (Ω) of eigenfunctions associated with the eigenvalues λεi(ε)
of (15.1) which satisfy λεi(ε) ∈ [λ−Kεθ, λ+Kεθ] with K > 0 and 0 < θ < 1/2,
‖∇ũε‖L2(Ω) = 1, such that

‖∇(ũε − αεϕεu)‖L2(Ω) ≤ Cε1/2−θ, (15.16)

where C is a constant independent of ε, ϕε(x) = ϕ(x3/ε) with ϕ ∈ C∞(R),
0 ≤ ϕ ≤ 1, ϕ(r) = 0 if |r| ≤ 1 and ϕ(r) = 1 if |r| ≥ 2, and αε is a sequence
of constants that converges to 1 as ε→ 0.

Proof. Let Vε be the space H1
0 (Ω) with the scalar product

(v, w)ε =
∫
Ω

∇v · ∇w dx+
∫
Ω\ωε

pvw dx+ ε−3
∫
ωε

qvw dx, ∀v, w ∈ H1
0 (Ω).

Let us consider Bε the operator defined on Vε by
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(Bεv, w)ε =
∫
Ω\ωε

pvw dx+ ε−3
∫
ωε

qvw dx, ∀v, w ∈ Vε.

Obviously, Bε is a positive, self-adjoint, and compact operator whose eigen-
values are {1/(λεi + 1)}∞

i=1, where {λεi}∞
i=1 are the eigenvalues of (15.2).

Let (λ, u) be an eigenelement of (15.13). Let us prove that u ∈ H2(Ω±).
Indeed, if u �= 0 in Ω+, let us consider the domain Ω0

+ = {(x̄, x3) : (x̄, x3) ∈
Ω+ or (x̄,−x3) ∈ Ω+} ∪ γ and the function ũ(x) = u(x) if x ∈ Ω+ and
ũ(x) = −u(x̄,−x3) if (x̄,−x3) ∈ Ω+. Because of the geometry of Ω, the
boundary ofΩ0

+ is smooth. Besides, we can check that (λ, ũ) is an eigenelement
of the Dirichlet problem in Ω0

+. In fact, from the definition of ũ, it is clear
that −Δũ = λũ in Ω+ and Ω0

+ ∩ {x3 < 0}. Moreover, since ũ vanishes on γ,
applying the Green formula, we have that for any ψ ∈ D(Ω0

+),

< −Δũ, ψ >D′(Ω0
+)D(Ω0

+)= −
∫
Ω0

+

ũΔψ dx =
∫
Ω0

+

∇ũ · ∇ψ dx

=−
∫
Ω+

Δũψ dx−
∫
Ω0

+∩{x3<0}
Δũψ dx−

∫
γ

(
∂ũ

∂x3

∣∣∣∣
γ+

− ∂ũ

∂x3

∣∣∣∣
γ−

)
ψ dx̄,

(15.17)

where v|γ± denote v(x̄, 0±), respectively (cf. Section III.9 of [SaSa89]). Now,
using again the definition of ũ, the last term in the above expression is zero and
−Δũ = λũ in Ω0

+ in the sense of distributions. Thus, (λ, ũ) is an eigenelement
of the Dirichlet problem in Ω0

+; consequently, ũ ∈ H2(Ω0
+) and u ∈ H2(Ω+).

The same proof holds for Ω−.
Let u and ϕε be as the theorem states. It is clear that ϕεu ∈ H1

0 (Ω) and

‖∇(u− ϕεu)‖2L2(Ω) ≤ C1‖∇u‖2L2(ω2ε) + C2ε
−2‖u‖2L2(ω2ε),

where C1 and C2 are constants independent of ε and ω2ε denotes the 2ε-
neighborhood of γ. As u vanishes on γ, using the techniques to derive (15.5),
we obtain

‖u‖2L2(ω2ε) ≤ Cε2‖∇u‖2L2(ω2ε).

Also, since u ∈ H2(Ω±), (15.4) gives

‖∇u‖2
L2(ω±

2ε) ≤ Cε‖u‖
2
H2(Ω±),

where ω±
2ε denote ω2ε ∩Ω±, respectively. Hence,

‖∇(u− ϕεu)‖L2(Ω) ≤ Cε1/2, (15.18)

with C a constant independent of ε. Let us note that

‖ϕεu‖2ε → ‖∇u‖2L2(Ω) + ‖u‖2L2
p(Ω) = 1 +

1
λ

as ε→ 0.
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In order to apply Lemma 3, we prove the following estimate:∣∣∣∣(Bεvε − 1
1 + λ

vε, w

)
ε

∣∣∣∣ ≤ Cε1/2‖w‖ε, ∀w ∈ Vε, (15.19)

where vε = ϕεu/‖ϕεu‖ε.
Because of the definition of Bε, (·, ·)ε, ϕε, and the fact that (λ, u) is an

eigenelement of (15.13), we can write

(1 + λ)
∣∣∣∣(Bε(ϕεu)− 1

1 + λ
ϕεu,w)ε

∣∣∣∣ = λ

∫
Ω

p(ϕεu− u)w dx

−
∫
Ω

∇(ϕεu− u) · ∇w dx+
∫
γ

(
∂u

∂x3

∣∣∣∣
γ+

− ∂u

∂x3

∣∣∣∣
γ−

)
w dx̄(15.20)

for all w ∈ H1
0 (Ω). Besides, since u ∈ H2(Ω±), it can be verified [see the

technique for (15.5)]∣∣∣∣∣
∫
γ

∂u

∂x3

∣∣∣∣
γ±

w dx̄− 1
ε

∫
ω±

ε

∂u

∂x3
wdx

∣∣∣∣∣
≤ C

[∥∥∥∥∂2u

∂x2
3

∥∥∥∥
L2(ω±

ε )
‖w‖L2(ω±

ε ) +
∥∥∥∥ ∂u∂x3

∥∥∥∥
L2(ω±

ε )

∥∥∥∥ ∂w∂x3

∥∥∥∥
L2(ω±

ε )

]
with C a constant independent of ε, and, because of (15.4) and the definition
of (·, ·)ε, we get∣∣∣∣∣

∫
γ

∂u

∂x3

∣∣∣∣
γ±

w dx̄

∣∣∣∣∣ ≤ Cε1/2‖w‖ε, ∀w ∈ H1
0 (Ω). (15.21)

Thus, from (15.20), (15.18), and (15.21), (15.19) holds.
We apply Lemma 3 with A = Bε, H = Vε, u = vε, and r = Cε1/2, and

we deduce that there exist eigenvalues λεi(ε) of (15.1) verifying |1/(λεi(ε) +1)−
1/(λ + 1)| ≤ Cε1/2, and, since λεi(ε) are bounded by a constant independent
of ε, (15.15) is true.

In addition, if we take r∗ = εθ with 0 < θ < 1/2, Lemma 3 ensures the
existence of ṽε, with ‖ṽε‖ε = 1, ṽε belonging to the eigenspace associated with
all the eigenvalues of operator Bε lying on the segment [1/(λ+1)− εθ, 1/(λ+
1) + εθ], such that ‖ṽε − vε‖ε ≤ Cε1/2−θ. Then, ‖∇ṽε‖2L2(Ω) → 1/(1 + 1/λ),
and (15.16) holds for ũε = ṽε/‖∇ṽε‖L2(Ω) and αε = 1/(‖∇ṽε‖L2(Ω)‖ϕεu‖ε).
Therefore, the theorem is proved.

Remark 2. Note that, because of the geometry of the problem, the proof
in (15.17) provides the smoothness of the eigenelements of (15.13) in Ω0

+
and consequently in Ω±.
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branes with very heavy thin inclusions. Math. Models Methods Appl. Sci.,
14, 987–1034 (2004).
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On J. Ball’s Fundamental Existence Theory
and Regularity of Weak Equilibria in Nonlinear
Radial Hyperelasticity

S.M. Haidar

Grand Valley State University, Allendale, MI, USA; haidars@gvsu.edu

In 1982, J. Ball formulated a pioneering theory on the existence and unique-
ness of weak radial equilibria to the pure displacement boundary value prob-
lem associated with isotropic, frame-invariant strain-energy functions in non-
linear hyperelasticity. In the theory [Bal82], he posed the following question:
“Does strong ellipticity (‘of the stored energy’) imply that all solutions to the
equilibrium equations which pass through the origin and have finite energy
are trivial?” J. Ball’s work depended critically on the number of elasticity
dimensions.

In this chapter, we will present models in n-dimensional elasticity that
establish that the answer to J. Ball’s question is negative. This work extends
to higher dimensional elasticity the approach and results we presented, for
the first time, on this question in [Ha07]. These models also provide further

namely, that of regularity of weak equilibria, which would be hard to gain by
other methods such as the common, but delicate, phase plane analysis.

16.1 Introduction and Purpose

In effect, we consider a nonhomogeneous, isotropic, hyperelastic material body
which occupies the open, bounded subset Ω of R3 in a reference configuration
that we assume to be stress-free. The mechanical properties of the material
body are characterized by a stored-energy density function

W : Ω ×M3×3
+ → [0,∞).

To effect an extreme deformation, that is, to compress the body towards zero
volume or to extend it to infinite volume requires an infinite amount of energy.
This natural observation amounts to having W obey the following reasonable
growth behavior for each x ∈ Ω:

W (x, F ) → +∞ as det F → 0+ or +∞. (16.1)

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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We further assume W to be frame-indifferent and isotropic. That is, W re-
spectively satisfies

W (x,RF ) = W (x, F ) and W (x, FR) = W (x, F ) (16.2)

for all x ∈ Ω, F ∈ M3×3
+ , and R proper orthogonal. For details, see [TN65]

and [CS94].
It is well known that (16.2) holds if and only if there exists a function

φ : Ω̄× (0,∞)3 → R such that, for all F ∈M3×3
+ , φ(x, ·, ·, ·) is symmetric and

W (x, F ) = φ(x, ν1, ν2, ν3).

The νi’s are the singular values of F , and they represent the principal stretches
of F . For details, see [RE55] and [TN65].

In addition to the regularity relationship between W and φ (e.g., W ∈ Ck
if and only if φ ∈ Ck, k ∈ N), there is an important connection between their
constitutive behavior. If W ∈ C1(Ω ×M3×3

+ ) and is rank-one convex, then φ
satisfies the Baker–Erickson inequalities:

(νiΦi − νjΦj)
(νi − νj)

≥ 0 (16.3)

for i �= j, νi �= νj , Φi = ∂φ/∂νi, i = 1, 2, 3. (For further details, see [TN65].)
The Baker–Ericksen inequalities are physically a very plausible constitu-

tive criterion inasmuch as they ensure the preservation of order between the
greatest stress and the greatest extension.

In the absence of external forces, the total stored energy associated with
a deformation u(·) of the body is given by

u→ J(u,Ω) :=
∫
Ω

W (x,∇u(x))dx, (16.4)

and the equilibrium equations are given by the Euler–Lagrange equations:

div
[
∂W

∂F
(x, F )

]
= 0, x ∈ Ω,

where F ≡ ∇u(x). For a given positive real number λ, we mainly reconsider
the questions of regularity and coexistence of nontrivial equilibrium solutions
of

div
[
∂W

∂F
(x, F )

]
= 0, in Ω (16.5)

u(x) = λx on ∂Ω. (16.6)

We hereinafter use the abbreviation (DBVP) to refer to the displacement
boundary value problem consisting of equations (16.5) and (16.6). Generally,
for a pure displacement boundary value problem of nonlinear elasticity, it is
sufficient [AB78] to consider only those deformations for which the condition
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det[∇u(x)] > 0

holds for each x in Ω. (See [Mor66].) This condition ensures, among other
properties, the invertibility and order preservation of the admissible deforma-
tion. We also remark that (16.6) is to be understood in the sense of the trace
on ∂Ω (see [Ada75]).

By restricting the geometrical structure of Ω to be the unit ball in R3,
Ball [Bal77b] and [Bal82] discussed favorable conditions other than rank-
one convexity and quasi-convexity of the stored-energy density to ensure the
uniqueness of homogeneous radial equilibria to (DBVP). In this case, the ad-
missible deformations are considered to be of the form

u(x) =
r(R)
R

x, (16.7)

where R = |x|.
For u ∈W 1,1(Ω; R3), the weak derivatives of u in (16.7) are given by

∇u(x) =
r(R)
R

1 +
x⊗ x
R2

[
r′(R)− r(R)

R

]
, for a.e. x ∈ Ω. (16.8)

Equation (16.8) implies that

v1 = r′, v2 = v3 = r/R.

The total energy functional J(u;Ω) in (16.4) now becomes J(u;Ω) = 4πI(r),
where

I(r) :=
∫ 1

0
R2φ(R; r′, r/R, r/R)dR. (16.9)

It is known ([Bal82], Theorem 4.2) that u(x) = (r/R)x ∈W 1,1(Ω; R3) is a
weak equilibrium solution if and only if r′(R) > 0 a.e. in (0, 1), R2φ,1 (R) and

R2φ,2 (R) ∈ L1(0, 1), and R2φ,1 (R) = 2
∫ R

1
ρφ,2 (ρ)dρ + const., a.e. in (0, 1),

where φ,i (R) = φ,i

(
R; r′,

r(R)
R
,
r(R)
R

)
for i = 1, 2. A stable equilibrium

solution will minimize the functional I(·) of (16.9).
In [Ha07], we constructed models in plane elasticity of strongly elliptic

strain-energy density functions of the form

W (x, F ) = R−3[det (R(1− γ)F )− 1
]a [det(R1−γF )

]−b
, (16.10)

where γ ∈ (0, 1), and a and b are positive real numbers. There we showed that,
for certain choices of a and b, the equilibrium equations associated with (16.10)
admit nontrivial weak solutions of the form r(R) = λRγ for which the total
energy is finite. In other words, we showed that strong ellipticity of W is
not sufficient for equilibrium solutions passing through the origin and having
finite energy to be trivial. In fact, those models may be modified to produce



www.manaraa.com

164 S.M. Haidar

nontrivial equilibria having the same energy value as the global minimizer
of the functional J , namely, zero. Nonetheless, our plan here is to generalize
the approach in [Ha07] to three-dimensional elasticity. We do so in the next
section, which is the main part of this work. But first we remark the following
from [Ha07].

Remark 1. Let f(R, r, r′) denote the integrand of I(r) in (16.9), namely,

f(R, r, r′) = R2φ(R; r′,
r

R
,
r

R
). (16.11)

For some γ ∈ (0, 1) and for every ε > 0 we assume that f satisfies the following
constitutive property:

f(εR, εγr, εγ−1r′) = ε−1f(R, r, r′). (16.12)

This homogeneity property was used in [BM85] to study the regularity of min-
imizers for one-dimensional variational problems in the calculus of variations.
See [Hai00] for a physical interpretation of this scale-invariance property. Set-
ting ε = 1

R in (16.12) yields

f(R, r, r′) = R−1f(1, rR−γ , r′R1−γ). (16.13)

Let
P (R, r′) = r′R1−γ and X(R, r) = rR−γ .

Relation (16.13) may now be rewritten as

f(R, r, r′) := R−1e(P,X), (16.14)

where
e(P,X) = f(1, X, P ).

Due to the symmetry property of φ(R; ·, ·, ·) in v1, v2, and v3, we observe that
φ(R; r′, r/R, r/R) is the restriction of φ(R; v1, v2, v3) to the plane v2 = v3 =
r/R. Equivalently, e(P,X) is the restriction to the plane X1 = X2 = X of
the symmetric quantity E(P,X1, X2) associated with φ(R; v1, v2, v3), where
Xi = vi+1R

1−γ for i = 1, 2. Moreover, the condition φ,11 (R; r′, r/R, r/R) ≥ 0
is equivalent to e,pp (P,X) ≥ 0.

For some λ ∈ (0,+∞), observe that an r(·) of the form r(R) = λRγ must
be an absolute minimizer for I(·) in (16.9) because along such r(·) and in the
light of (16.14) one has

I(r) =
∫ 1

0
R−1 e(λγ, λ)dR,

which will yield the value zero only if there is a zero of e of the form (λγ, λ)
in the PX-plane. So an r(·) of the form r(R) = λRγ corresponds to a point
along the line P = γX in the PX-plane or, equivalently, to an admissible
solution of the ordinary differential equation P = γX.
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16.2 Construction of Models and Regularity of Weak
Equilibria

Before we proceed with the construction of models, we would like to recapitu-
late the various underlying properties of the stored-energy density function φ
in three-dimensional elasticity. In two-dimensional elasticity these properties
maintained the same form. In either case, based on the foregoing analysis, φ
or, equivalently, the integrand f in (16.11) of the total energy functional is
expected to obey the following standing assumptions:

3-D Elasticity 2-D Elasticity

(A1) φ,11(R; r′, r/R, r/R) > 0 φ,11(R; r′, r/R) > 0
(A2) φ(R; ν1, ν2, ν3) is symmetric φ(R; ν1, ν2) is symmetric

in ν1, ν2, ν3 in ν1, ν2
(A3) limν1,ν2,ν3→0+ φ limν1,ν2→0+ φ

= limν1,ν2,ν3→+∞ φ = +∞ = limν1,ν2→+∞ φ = +∞
(A4) for some γ ∈ (0, 1) for some γ ∈ (0, 1)

and for every ε > 0 and for every ε > 0
φ(εR; εγ−1r′, εγ−1r/R, εγ−1r/R) φ(εR; εγ−1r′, εγ−1r/R)
= ε−1φ(R; r′, r/R, r/R) = ε−1φ(R; r′, r/R)

(A5) φ satisfies the Baker–Ericksen φ satisfies the Baker–Ericksen
inequalities: inequality:
νiφ,i − νjφj
νi − νj

> 0
ν1φ,1 − ν2φ,2
ν1 − ν2

> 0

i �= j ∈ {1, 2, 3}
Condition (A3) is the equivalent of the extreme deformation property (16.1).

The natural growth condition (e.g., superlinearity in r′ as r′ → +∞) usually
seen in existence theorems in nonlinear elastostatics could be dispensed with
in the present development since the class of φ’s which we construct enables
us to obtain explicitly the energy minimizers in different spaces.

Condition (A5) represents the Baker–Ericksen inequalities which were
mentioned earlier in (16.3). Condition (A4) is simply the homogeneity prop-
erty (16.13) expressed in terms of φ. It is this property which allows us to
make use of field theory and thereby enables us to obtain the desired nontriv-
ial minimizers.

A successful model consists of a function φ satisfying conditions (A1)–
(A5). A striking difference between the model in [Ha07] and this model is
reflected by the symmetry condition (A2). In this case, φ(R; r′, r/R, r/R) is
the restriction to the plane ν2 = ν3 of the symmetric function of (A2). We
now construct the model in question.
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16.2.1 Construction of Models

To begin with, for a and b ∈ R+, let us consider

ê(P,X) := |P −X|a(PX2)−b. (16.15)

Since ê has no zero along P = γX, ê cannot actually serve as an example
by itself. However, it will be used later in the construction of our model.
This ê(P,X) is the restriction to the plane X1 = X2 =: X of the symmetric
function given by

Ê(P,X1, X2) :=
1
2

[|P−X1|a+|P−X2|a+|X1−X2|a] (PX1X2)−b. (16.16)

Hence, condition (A2) holds for Ê. Let us verify that Ê satisfies the rest of
the conditions.

Ê,PP (P,X) ≥ 0, whenever a− b− 1 > 0,

lim
P,X→+∞ or 0+

Ê = +∞,

and the Baker–Ericksen inequalities easily follow, i.e.,

PÊ,P −X1Ê,X1

P −X1
(P,X,X) = a(P −X)a−2(PX2)−b[2P +X] ≥ 0.

Thus, Ê satisfies (A1)–(A5), but again it does not have a zero along P =
λX1 = λX2. [See Remark 1 on page 164].

However, by using (16.15), we can now construct a function E with an
appropriate zero. Consider the following:

e(P,X) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2b(P−X)a(PX2)−b + εΔ(P,X), 0 < PX2 ≤ 2;

(P−X)a(PX2−3)c +N(PX2−2)2 + εΔ(P,X), 2 < PX2 ≤ 3;

N(PX2−4)2 + εΔ(P,X), PX2 > 3
(16.17)

where the numbers c,N , and ε are to be determined later, and the function
Δ(·, ·) is defined by

Model 1: Δ(P,X) := (PX2 − 4)2

Model 2: Δ(P,X) := (P − α)2(X − α)4 + (P − γα)2(X − γα)4,

where α = (4/γ)1/3.
In either case, Δ(γX0, X0) = 0 ⇐⇒ X0 = α. For instance, in Model 1,

e(P,X) = (N + ε)Δ(P,X) for PX2 > 3. Thus, e(γX0, X0) = 0. Hence, inf
I(r) over W 1,s(0, 1) for s < 1/(1− γ) is indeed zero while, for s ≥ 1/(1− γ),
the curve associated with the zero of e is no longer admissible.
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Note that the function e of (16.17) is the restriction to the plane X1 =
X2 = X of the symmetric function given by

E(P,X1, X2) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2b−1Ê(P,X1, X2)+εΔ(P,X1, X2), if 0 < PX1X2 ≤ 2;

1
2 [(P−X1)a+(P−X2)a+(X2−X1)a] (PX1X

2−3)c

+ N(PX1X
2 − 2)2 + εΔ(P,X1, X2), if 2 < PX1X2 ≤ 3;

N(PX1X2−4)2 + εΔ(P,X1, X2), if PX1X2 > 3
(16.18)

where Ê is as in (16.16) and Δ is given by

Model 1: Δ(P,X1, X2) := (PX1X2 − 4)2

Model 2: Δ(P,X1, X2) := (P − α)2(X1 − α)2(X2 − α)2

+ (P − γα)2(X1 − γα)2(X2 − γα)2.

This establishes the symmetry of the integrand. Hence, condition (A2) is
satisfied. Condition (A3) is also satisfied since it holds for Ê as discussed
earlier and since the increment Δ is ≥ 0 everywhere.

To complete the construction there remains to ensure that E, as defined
over regions II and III (see Figure 16.1), does obey the rest of the conditions,
namely, (A1), (A4), and (A5).

X

P

I

II
PX2 = 3

III

PX2 = 2

Fig. 16.1. Restriction to the plane X1 = X2 = X.

The homogeneity condition (A4) is obviously satisfied.
Since E, as defined over region III, is strictly convex in the variable

PX1X2, then condition (A1) is immediate in that region. This also implies
that E in III is rank-one convex and thus the Baker–Ericksen inequalities
necessarily hold, as we discussed earlier in (16.3). Another way of verifying
that condition (A5) holds for such functions is as follows.

The function E as defined over region III is of the form
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(h ◦ t)(P,X1, X2),

where t(P,X1, X2) = PX1X2. In terms of (P,X1, X2) inequalities (A5) are
given by

PiE,i − PjE,j
Pi − Pj

≥ 0, i �= j = 1, 2, 3, (16.19)

where (P1, P2, P3) = (P,X1, X2).

E,i = h′ · PjPk, i �∈ {j, k},

E,j = h′ · PkPk, j �∈ {i, k}.
PiE,i − PjE,j ≡ 0 and thus (A5) automatically follows. This also holds for
that part of E over region II which corresponds to hydrostatic pressure (i.e.,
it is a function of det F ). Therefore, the only less obvious part of E in region
II corresponds to

(P −X)a(PX2 − 3)c.

Let g(P,X) := (P −X)a(PX2 − 3)c +N(PX2 − 2)2. It suffices to prove that
g,PP > 0.

Proposition 1. We have g,PP > 0.

Proof. We have

g,PP = a(a−1)(P −X)a−2(PX2−3)c + 2acX2(P−X)a−1(PX2−3)c−1

+ c(c−1)X4(P−X)a(PX2−3)c−2+2NX4

= {[a(a− 1)+2ac+c(c−1)](PX2)2−6a(a− 1+c)PX2−2acPX5

+ 6acX3+2c(c−1)PX5 + c(c−1)X6

+ 9a(a−1)}(P− zX)a−2(PX2−3)c−2+2NX4. (16.20)

Using (16.20), we introduce S(·, ·) and H(·, ·) as follows:

S(P,X) := [a(a− 1) + 2ac+ c(c− 1)](PX2)2 − 6a(a− 1 + c)PX2

H(P,X) := c(c− 1)X6 + 6acX3 − 2acX3(PX2)

+ 2c(c− 1)X3(PX2) + 9a(a− 1) + 9#X4,

where 9# = 2N . We want to show that S(P,X) ≥ 0 and H(P,X) > 0.

Since PX2 ≥ 0, then

S(P,X) ≥ 0 ⇐⇒ a(a− 1) + 2ac+ c(c− 1)−3a(a− 1 + c) ≥ 0
⇐⇒ c2 − (1 + a)c+ 2a(1− a) ≥ 0
⇐⇒ c ≥ 2a. (16.21)

Since 2 ≤ PX2 ≤ 3, then
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H(P,X) > 0 ⇐⇒ c(c−1)X6 − 6c(c−1)X3 + 9a(a−1) + 9#X4 > 0. (16.22)

The proof of (16.22) is a bit tricky.
Case 1. Suppose that X ≥ 1. Then X4 ≥ X3 and it is clear how to choose

# to make (16.22) hold. Nevertheless, let us do the following: put X3 =: t,

H(P,X) > 0 ⇐⇒ Q(t) := c(c− 1)t2 − 6c(c− 1)t+ 9[a(a− 1) + #] > 0.

Choosing # such that
c(c− 1)− a(a− 1) ≤ #,

implies Q(t) > 0 for all t ≥ 1.
Case 2. Suppose that X < 1. Then X4 > X6 and

H(P,X) > 0 ⇐⇒ [c(c− 1) + 9#]t2 − 6c(c− 1)t+ 9a(a− 1) =: q(t) > 0.

Choosing # such that

c(c− 1)
9a(a− 1)

[c(c− 1)− a(a− 1)] ≤ #,

makes q(t) > 0 for all t < 1. Let us now take

# := max{c(c− 1)− a(a− 1),
c(c− 1)

9a(a− 1)
[c(c− 1)− a(a− 1)]}. (16.23)

With this choice of #, it follows that H(P,X) > 0.
For a = 2 and 2 ≤ PX2 ≤ 3 it is not difficult to see that

g,PP > (PX2 − 3)c−2[S +H] (of course c ≥ 2a).

Relations (16.21) and (16.23) imply that g,PP > 0 (i.e., E,PP (P,X,X) > 0 in
region II.) This completes the proof of Proposition 1.

To finish the construction of the model there remains to verify that g
satisfies the Baker–Ericksen inequalities. Recall that g is the restriction to
the plane X1 = X2 = X of the symmetric function given by the following
expression:

1
2
[(P−X1)a+(P−X2)a+(X1−X2)a](PX1X2−3)c+N(PX1X2−2)2. (16.24)

Clearly, the term (PX1X2−2)2 verifies inequalities (16.19). Let G(P,X1X2)
denote the remaining term in expression (16.24). By direct computation, it
follows that

G,P = a[(P −X1)a−1+(P −X2)a−1](PX1X2 − 3)c

+ cX1X2(PX1X2 − 3)c−1[(P −X1)a + (P −X2)a + (X1 −X2)a];

G,Xi
= a[−(P −Xi)a−1 + (Xi −Xj)a−1](PX1X2 − 3)c

+ cPXj(PX1X2 − 3)c−1[(P −X1)a + (P −X2)a + (X1 −X2)a];
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where i �= j ∈ {1, 2};
PG,P −XiG,Xi

P −Xi
(P,X,X)=a(P−X)a−2(PX2−3)c(2P+X) ≥ 0, for i=1, 2.

By symmetry the remaining inequality of (A5) also follows. Hence, E, as
defined in (16.18), satisfies (A1)–(A5), and consequently the construction of
the models in question is now complete.

16.3 Concluding Remarks

1. The exponent 2 in the term Δ(P,X) is immaterial (see Section 16.2.1).
Choosing a sufficiently large exponent, we can therefore obtain a stored-
energy function corresponding to strong materials which still exhibit a
rather strong singularity at the center of the ball, just as in r(R) = λRγ .

2. There is nothing specific in choosing the boundaries of regions I and II
to be PX2 = 2, 3. In fact, one can take any two distinct positive real
numbers k1 and k2, form the curves PX2 = k1 and k2, and then closely
follow the same steps as above to get similar results.

3. Our model shows that strong ellipticity of the strain energy in higher
dimensional elasticity is not sufficient for equilibrium solutions passing
through the origin and having finite energy to be trivial. It admits non-
trivial, singular solutions of the form r(R) = λRγ having the same energy
value as the absolute minimizer!
In n-dimensional elasticity the above model still corresponds to a natural
state and also yields a nontrivial equilibrium solution, exactly the case
n = 2 as in [Ha07]. We should also note that these solutions shape the
common property r′, r

R → +∞ as R → 0+ as do cavitation solutions in
which r(0) > 0. This means that the singular behavior of φ as vi → 0+

does not play any role in the existence of such nontrivial solutions.

This provides further insight into the fundamental question of regularity
for nonconvex W ’s. How regular can the solution be? Can it be in W 1,s(0, 1)
for s ≥ 1

1−γ or even in a smaller space? While very little is known about
this question, it would be worthwhile investigating the possible existence of
other nontrivial, singular solutions of the form r̂(R) = λRβγ for β > 1 for
which the energy functional shows a gap in its infimum over the two different
admissible spaces. Such singular solutions might be connected with material
defectiveness such as the onset of fracture. Nonconvex strain energies (W ’s)
are of interest since they can be connected with materials that undergo phase
transitions (see [Er73]). Likewise, singular equilibrium solutions such as those
above might be connected with material defectiveness such as the onset of
fracture. These issues also shed light on another equally important question:
that of obtaining formulations of the problems that are amenable to successful
numerical treatments.
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The Helmholtz equation describes a lot of physical processes. For example, in
quantum chaos some model systems are described by the Helmholtz equation
with appropriate boundary conditions. One of them is the quantum billiard
problem (see [Bu01], [Gr01], [Gu90], [KoSc97], [Si00], and [Si70]).

Generic billiards are one of the simplest examples of conservative dynam-
ical systems with chaotic classical trajectories.

According to this model, the particle is trapped inside the simply corrected
region D with the boundary S, in which it can move freely and this movement
is ballistic.

In this case, the Schrödinger equation for a free particle assumes the form
of the Helmholtz equation (see [Gr01], [Gu90], [Si00], and [Si70]).

Helmholtz equation in the finite domain D with the boundary S. The following
problem is considered.

Problem 1. Find a real function u(x, y) in D having second-order deriva-
tives satisfying the equation

Δu(x, y) + λ2u(x, y) = 0

and the boundary condition
u
∣∣
S

= 0,

where λ is a constant to be determined.
The constant λ2 reflects the energy levels of the particle.
We need to calculate the eigenvalues and eigenfunctions for the Dirichlet

boundary conditions (hard-wall conditions) of Problem 1.
The spectrum of this equation is discrete, and the distribution of the energy

levels is determined by the form of the area [Bi88].
In this chapter, Problem 1 is investigated by means of the conformal

mapping and integral equation methods, and particular cases are considered
(hexagon, cardioid, and lemniscate).

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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This chapter deals with the two-dimensional homogeneous problem for the
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Let z = f(ζ) be the conformal mapping of the rectangle D0{0 ≤ ξ ≤ a;
0 ≤ η ≤ b} of ζ, (ζ = ξ + iη), plane on the area D of the complex z-plane
where (z = x+ iy). The boundary of D0 is denoted by S0.

This mapping reduces Problem 1 to the following problem.

Problem 2. Find a real function u0(x, y) in D0 having second-order
derivatives and satisfying the equation and boundary condition

Δu0(ξ, η) + λ2
∣∣f ′(ζ)

∣∣2u0(ξ, η) = 0, (17.1)

u0
∣∣
S0

= 0,

where u0(ξ, η) = u(f(ζ)) and λ is a constant to be determined.
Using the Poisson representation, we can reduce Problem 2 to the equiv-

alent integral equation [Bi88]

u0(ζ0)−
λ2

2π

∫
D0

∣∣f ′(ζ)
∣∣2K(ζ, ζ0)u0(ζ) dξ dη = 0, ζ0 ∈ D0, (17.2)

ζ0 = ξ0 + iη0,

where

K(ζ, ζ0) = ln
∣∣∣∣ σ(ζ − ζ0)σ(ζ + ζ0)
σ(ζ − ζ0)σ(ζ + ζ0)

∣∣∣∣.
Here is a definite branch of this function, σ is the Weierstrass function for
the periods 2a and 2b, ζ0 = ξ0 − iη0 (see [LaSh87] and [JaEnLo60]), and σ is
given by the formulas

σ(ζ) =
2aeδζ

2/4a

θ′
1(0)

θ1

( ζ
2a

)
;

ln θ1(ζ) = ln sinπζ +
∞∑
n=1

qn cos 2πnζ
n sinh πnκ

; q = e−πκ; κ =
b

a
, (17.3)

where θ1 is the Jacobi function and δ is a specific constant.
Using Banach’s theorem, we easily prove the next assertion.

Theorem 1. If
λ2

2π
<

1
d(D)

,

where d(D) is the diameter of D, then equation (17.2) has only the trivial
solution.

Let us introduce the notation v(ζ) = |f ′(ζ)|2u0; then we can rewrite equa-
tion (17.2) in the form
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v(ζ0)−
λ2

2π

∣∣f ′(ζ)
∣∣2 ∫

D0

K(ζ, ζ0) v(ζ) dξ dη = 0, ζ0 ∈ D0, (17.4)

ζ0 = ξ0 + iη0.

We admit that the function u in the rectangle D0 is representable by the
Fourier series

u =
∑
m,n

cmn sin
mπ

a
ξ sin

nπ

b
η. (17.5)

Substituting (17.5) into (17.4), we obtain

v(ζ0)−
λ2

2π
|f ′(ζ0)|2

∑
m,n

Cmn

∫
D0

K(ζ, ζ0) sin
mπ

a
ξ sin

nπ

b
η dξ dη = 0. (17.6)

Multiplying (17.6) by
√

4
ab sinm1

π
a ξ0 sin n1π

b η0 and integrating over the
rectangle D0, we obtain

Cm1n1 −
λ2

2π

∑
m,n

Cmn f
mn
m1n1

= 0, m1, n1 = 1, 2, . . . , (17.7)

where

fmnm1n1
=

√
4
ab

∫
D0

∫
D0

∣∣f ′(ζ)
∣∣2 sin

mπ

a
ξ sin

nπ

a
η

× sin
m1π

a
ξ0 sin

n1π

a
η0 dξ dηdξ0 dη0.

The formula (17.7) represents the infinite system of homogeneous linear alge-
braic equations with respect to Cm1n1 .

As the three parameters of the conformal mapping can be chosen arbi-
trarily, we can assume, for example, that κ = b

a = 10, (a = 1, b = 10), so
q = e−πκ (see (17.3)) will be sufficiently small and the series in (17.7) is
convergent; then with a high accuracy we can write the approximate formula

Cm1n1 −
λ2

2π

m0,m0∑
m,n

Cmn f
mn
m1n1

= 0, m1, n1 = 1, . . . ,m0. (17.8)

This is a finite system of homogeneous linear algebraic equations. As we
seek a nonzero solution, the matrix of this system should be singular; on the
diagonal of this matrix we will have the terms 1− λ2

2π f
11
11 , 1− λ2

2π f
12
12 , . . . .

The determinant of this system should be zero, and we obtain an equation
of the (m0)2-th order with respect to λ2.

Let us consider some examples.
For polygonal areas, |f ′(ξ)| takes the form
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f ′(ζ) = C

n∏
j=1

(
C0 sn ζ − aj

)aj−1 cn ζ · dn ζ, (17.9)

where C and C0 are specific constants, a1, . . . , an are the points corresponding
to the vertices of the polygon, and c1, . . . , cn and ajπ are the angles of D,
j = 1, . . . , n.

For a hexagon, (17.9) becomes

f ′(ζ) = C
{
C0 sn ζ

(
c20 sn 2ζ − a2

1
)(
c20 sn 2ζ − a2

2
)}− 1

3
cn ζ dn ζ.

We can use the formulas for the small q [JaEnLo60],

sn u ≈ sin
πn

2a

(
1 + 4q cos2

πn

2a

)
,

cn u ≈ cos
πn

2a

(
1− 4q sin2 πn

2a

)
,

dn u ≈ 1− 8q sin2 πn

2a
,

and C = 3|d|
2π and C0 ≈ 3.2. After simple transformations we can calculate

the coefficients fnnm1n1
using Mathcad or Maple, so we can find the eigenvalues

of system (17.8), and consequently, the corresponding independent solutions
Cmn (Fourier coefficients of u). Thus, we obtain approximate solutions of
Problem 1.

Remark 1. In some cases, it is more convenient to use mapping on the circle.
Thus,

(i) for the cardioid,

z = f(ζ) =
√
ζ, f ′(ζ) =

1
2
√
ζ
;

(ii) for the lemniscate,

z = f(ζ) = (ζ)2, f ′(ζ) = 2ζ.

In these cases, is not necessary to consider the integral equation. We con-
sider equation (17.1) and, by separation of variables, obtain the solutions of
Problem 1 directly in terms of the Hankel functions.
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18.1 Introduction

A problem on scattering acoustic waves by a thin cylindrical screen is studied.
In doing so, the Dirichlet condition is specified on one side of the screen, while
the impedance boundary condition is specified on the other side of the screen.
The solution of the problem is subject to the radiation condition at infinity
and to the propagative Helmholtz equation. By using potential theory, the
scattering problem is reduced to a system of singular integral equations with
additional conditions. By regularization and subsequent transformations, this
system is reduced to a vector Fredholm equation of the second kind and index
zero. It is proved that the obtained vector Fredholm equation is uniquely
solvable. Therefore, the integral representation for a solution of the original
scattering problem is obtained.

18.2 Statement and Solution of the Problem

Consider a simple open arc Γ ∈ C2,λ, λ ∈ (0, 1], in a plane x ∈ R2. The arc Γ
is parameterized by the arc length s: Γ =

{
x: x = x(s) =

(
x1(s), x2(s)

)
,

s ∈ [a, b]
}

so that a < b. Let τx and nx be a tangent and a normal vector to
Γ at the point x(s). We consider Γ as a cut. We denote by Γ+ the side of Γ
which is to the left when the parameter s increases, and by Γ− the opposite
side.

Function u(x) belongs to the smoothness class K if

1) u ∈ C0
(
R2 \ Γ

)
∩ C2

(
R2 \ Γ

)
and u(x) is continuous at the endpoints

of the arc Γ ;
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2) ∇u ∈ C0
(
R2 \ Γ \X

)
, where X is the set of endpoints of Γ : X =

x(a) ∪ x(b);
3) in a neighborhood of each endpoint x(d) ∈ X for some constants C > 0,
ε > −1, the inequality |∇u| ≤ C|x−x(d)|ε holds when x→ x(d) and d = a
or d = b.

Here functions u(x) and∇u(x) are continuously extendable at the cut Γ\X
from the left and from the right, but they may have a jump across Γ \X.

The problem. Find a function u(x) of the class K, which satisfies the
Helmholtz equation

Δu(x) + k2u(x) = 0, x ∈ R2 \ Γ, k = const > 0, (18.1)

the boundary conditions

u(x)|x(s)∈Γ+ = f+(s), (18.2)[
∂u(x)
∂nx

− β(s)u(x)
]∣∣∣∣
x(s)∈Γ−

= f(s), (18.3)

and the Sommerfeld radiation condition at infinity

u = O
(
|x|−1/2

)
,

∂u(x)
∂|x| − iku(x) = o

(
|x|−1/2

)
, (18.4)

where |x| =
√
x2

1 + x2
2 → ∞. Here β(s), f(s) ∈ C0,λ(Γ ), f+(s) ∈ C1,λ(Γ ),

and Imβ(s) ≤ 0 for each s ∈ Γ .
Taking into account (18.2), condition (18.3) can be replaced by the equiv-

alent condition

∂u(x)
∂nx

∣∣∣∣
x(s)∈Γ−

+ β(s)
[
u(x)|x(s)∈Γ+ − u(x)|x(s)∈Γ−

]
= f−(s), (18.5)

where f−(s) = f(s) + β(s)f+(s) ∈ C0,λ(Γ ).
Boundary condition (18.2) can be differentiated in terms of s, and we

obtain the conditions

∂u(x)
∂τx

∣∣∣∣
x(s)∈Γ+

=
(
f+)′ (s), (18.6)

u
(
x(a)
)

= f+(a). (18.7)

We can prove that the problem has no more then one solution. We shall
look for a solution to the problem (18.1)–(18.4) of the form

u[μ, ν](x) = T [μ](x) +W [ν](x), (18.8)

where
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T [μ](x) =
i

4

∫
Γ

μ(σ)V (x, σ) dσ

is the angular potential introduced by Gabov,

V (x, σ) =
∫ σ

a

∂

∂ny
H(1)

0

(
k|x− y(ξ)|

)
dξ, σ ∈ [a, b],

W [ν](x) =
i

4

∫
Γ

ν(σ)H(1)
0

(
k|x− y(σ)|

)
dσ

is the single-layer potential, and H(1)
0 (z) is the Hankel function of the first

kind and index zero.
Densities μ(s), ν(s) in potentials are of space Cωq (Γ ), ω ∈ (0, 1], q ∈ [0, 1).

We say that F(s) ∈ Cωq (Γ ), if F0(s) ∈ C0,ω(Γ ), where F0(s) = F(s)(s − a)q
(b− s)q, and ‖F(·)‖Cω

q (Γ ) = ‖F0(·)‖C0,ω(Γ ).
Furthermore, function μ(s) must satisfy the condition∫ b

a

μ(σ) dσ = 0. (18.9)

Using [Kr94(1)], we can prove that function (18.8) fulfills all the conditions
of the problem except the boundary conditions. We substitute (18.8) in (18.5),
and (18.6) and obtain the integral equations for μ(s) and ν(s) on Γ :

μ(s) +
1
π

∫
Γ

ν(σ)
dσ

σ − s +
∫
Γ

μ(σ)w1(s, σ) dσ

+
∫
Γ

ν(σ)w2(s, σ) dσ = 2
(
f+)′ (s), (18.10)

− ν(s)− 1
π

∫
Γ

μ(σ)
dσ

σ − s +
∫
Γ

ν(σ)w3(s, σ) dσ

−
∫
Γ

μ(σ)w4(s, σ) dσ + 2β(s)ρ[μ](s) = 2f−(s), (18.11)

where

w1(s, σ) =
1
π

cosϕ0
(
x(s), y(σ)

)
|x(s)− y(σ)| +

i

2
∂

∂s
V0
(
x(s), σ

)
,

w2(s, σ) =
1
π

(
sinϕ0

(
x(s), y(σ)

)
|x(s)− y(σ)| − 1

σ − s

)
+
i

2
∂

∂s
h
(
|x(s)− y(σ)|

)
,

w3(s, σ) =
1
π

cosϕ0
(
x(s), y(σ)

)
|x(s)− y(σ)| +

i

2
∂

∂nx
h
(
|x(s)− y(σ)|

)
,

w4(s, σ) =
1
π

(
sinϕ0

(
x(s), y(σ)

)
|x(s)− y(σ)| − 1

σ − s

)
− i

2
∂

∂nx
V0
(
x(s), σ

)
,
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V0(x, σ) =
∫ σ

a

∂

∂ny
h
(
k|x− y(ξ)|

)
dξ,

ρ[μ](s) =
∫ s

a

μ(σ) dσ, s ∈ [a, b],

h(z) = H(1)
0 (z)− 2i

π
ln
z

k
.

By ϕ0(x, y) we have denoted the angle between −→xy and nx measured anti-
clockwise.

According to [Kr94(1), Kr94(2)], w3(s, σ) ∈ C0,λ(Γ × Γ ) and wj(s, σ) ∈
C0,p0(Γ × Γ ) when j =1, 2, 4. Here p0 = λ, if 0 < λ < 1, and p0 = 1− ε0 for
each ε0 ∈ (0, 1), if λ = 1.

Substituting function (18.8) in condition (18.7), we obtain one more equa-
tion for μ(s), ν(s):

T [μ]
(
x(a)
)
+W [ν]

(
x(a)
)
= 0. (18.12)

Then we make the change of unknown densities μ(s), ν(s), so that the
characteristic part of singular integral equations (18.10), (18.11) contains only
one unknown function. After regularization of these equations, using (18.9)
and (18.12), we obtain a vector Fredholm equation of index zero. The homoge-
neous equation has only a trivial solution. It means that the nonhomogeneous
equation is uniquely solvable. So, system (18.9)–(18.12) is uniquely solvable.

Theorem 1. Problem (18.1)–(18.4) has a unique solution, given by the sum
of potentials (18.8) with densities satisfying uniquely solvable Fredholm equa-
tions of the second kind and index zero.
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19.1 Introduction

Plane domains with cracks are plane domains bounded by closed curves and
open arcs (cracks). Boundary value problems in such domains model cracked
solid bodies or obstacles and screens (or wings) in fluids. An integral repre-
sentation of a classical solution to the harmonic Dirichlet problem in a plane
domain with cracks of an arbitrary shape has been obtained by the method
of integral equations in [Kr00-1], [Kr00-2], [Kr98], [Kr97], [Kr05] in the case
when the solution is assumed to be continuous at the ends of the cracks.
In this chapter this problem is considered in the case when the solution is
not continuous at the ends of the cracks. The well-posed formulation of the
boundary value problem is given, theorems on existence and uniqueness of
a classical solution are proved, and the integral representation for a classical
solution is obtained. Moreover, properties of the solution are studied with

to the Dirichlet problem considered in this chapter exists, while the weak
solution typically does not exist, though both the cracks and the functions
specified in the boundary conditions are smooth enough. This result follows
from the fact that the square of the gradient of a classical solution basically is
not integrable near the ends of the cracks, since singularities of the gradient
are rather strong there. This result is very important for numerical analysis;
it shows that finite elements and finite difference methods cannot be applied
to numerical treatment of the Dirichlet problem in question directly, since all
these methods imply existence of a weak solution. To use difference methods
for numerical analysis, one has to localize all strong singularities first and
next use a difference method in a domain excluding the neighborhoods of the
singularities.
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19.2 Formulation of the Problem

By an open curve we mean a simple smooth nonclosed arc of finite length
without self-intersections [Mu68].

In a plane in Cartesian coordinates x = (x1, x2) ∈ R2 we consider a
connected domain bounded by simple open curves Γ 1

1 , . . . , Γ
1
N1
∈ C2,λ and

simple closed curves Γ 2
1 , . . . , Γ

2
N2
∈ C2,λ, λ ∈ (0, 1], in such a way that all

curves are disjoint. We will consider both the case of an exterior domain and
the case of an interior domain when the curve Γ 2

1 encloses all others. Set

Γ 1 =
N1⋃
n=1

Γ 1
n , Γ 2 =

N2⋃
n=1

Γ 2
n , Γ = Γ 1 ∪ Γ 2.

The connected domain bounded by closed curves Γ 2 and containing open
curves Γ 1 will be called D, so that ∂D = Γ 2, Γ 1 ⊂ D. We assume that each
curve Γ jn is parametrized by the arc length s:

Γ jn =
{
x : x = x(s) =

(
x1(s), x2(s)

)
, s ∈

[
ajn, b

j
n

]}
,

n = 1, . . . , Nj , j = 1, 2,

so that a1
1 < b

1
1 < · · · < a1

N1
< b1N1

< a2
1 < b

2
1 < · · · < a2

N2
< b2N2

and the do-
main D is placed to the right when the parameter s increases on Γ 2

n . The
points x ∈ Γ and values of the parameter s are in one-to-one correspon-
dence except for the points a2

n, b
2
n, which correspond to the same point x for

n = 1, . . . , N2. Further on, the set of the intervals
N1⋃
n=1

[
a1
n, b

1
n

]
,

N2⋃
n=1

[
a2
n, b

2
n

]
,

2⋃
j=1

Nj⋃
n=1

[
ajn, b

j
n

]
on the Os-axis will be denoted by Γ 1, Γ 2, and Γ also.

Set Cj,r
(
Γ 2
n

)
=
{
F(s): F(s) ∈ Cj,r

[
a2
n, b

2
n

]
, F (m)

(
a2
n

)
= F (m)

(
b2n
)
,

m = 0, . . . , j
}

, j = 0, 1, r ∈ [0, 1], and Cj,r
(
Γ 2
)

=
N2⋂
n=1

Cj,r
(
Γ 2
n

)
. The tan-

gent vector to Γ in the point x(s), in the direction of the increment of s, will
be denoted by τx = (cosα(s), sinα(s)), while the normal vector coinciding
with τx after rotation through an angle of π/2 in the counterclockwise direc-
tion will be denoted by nx = (sinα(s), − cosα(s)). According to the chosen
parametrization, cosα(s) = x′

1(s), sinα(s) = x′
2(s). Thus, nx is an interior

normal to D on Γ 2. By X we denote the point set consisting of the endpoints

of Γ 1: X =
N1⋃
n=1

(
x
(
a1
n

)
∪ x
(
b1n
))
.

Let the plane be cut along Γ 1. We consider Γ 1 as a set of cracks (or cuts).
The side of the crack Γ 1, which is situated on the left when the parameter s
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increases, will be denoted by
(
Γ 1
)+, while the opposite side will be denoted

by
(
Γ 1
)−.

We say that the function u(x) belongs to the smoothness class K1 if

1. u ∈ C0
(
D \ Γ 1 \X

)
∩ C2

(
D \ Γ 1

)
, ∇u ∈ C0

(
D \ Γ 1 \ Γ 2 \X

)
,

2. in the neighborhood of any point x(d) ∈ X the equality

lim
r→+0

∫
∂S(d,r)

u(x)
∂u(x)
∂nx

dl = 0 (19.1)

holds, where the curvilinear integral of the first kind is taken over a cir-
cumference ∂S(d, r) of a radius r with the center in the point x(d), nx is
a normal in the point x ∈ ∂S(d, r), directed to the center of the circum-
ference, and d = a1

n or d = b1n, n = 1, . . . , N1.

Remark 1. By C0
(
D \ Γ 1 \X

)
we denote the class of continuous in D \ Γ 1

functions, which are continuously extensible to the sides of the cracks Γ 1 \X
from the left and from the right, but their limiting values on Γ 1 \X can be
different from the left and from the right, so that these functions may have a
jump on Γ 1 \ X. To obtain the definition of the class C0

(
D \ Γ 1 \ Γ 2 \X

)
we have to replace C0

(
D \ Γ 1 \X

)
by C0

(
D \ Γ 1 \ Γ 2 \X

)
and D \ Γ 1 by

D \ Γ 1 in the previous sentence.

Problem D1. Find a function u(x) from the class K1, so that u(x) obeys
the Laplace equation

ux1x1(x) + ux2x2(x) = 0, (19.2)

in D \ Γ 1 and satisfies the boundary conditions

u(x)|x(s)∈(Γ 1)+ = F+(s), u(x)|x(s)∈(Γ 1)− = F−(s), u(x)|x(s)∈Γ 2 = F (s).
(19.3)

If D is an exterior domain, then we add the following condition at infinity:

|u(x)| ≤ const, |x| =
√
x2

1 + x2
2 →∞. (19.4)

All conditions of the problem D1 must be satisfied in a classical sense. The
boundary conditions (19.3) on Γ 1 must be satisfied in the interior points of
Γ 1; their validity at the ends of Γ 1 is not required.

Theorem 1. If Γ ∈ C2,λ, λ ∈ (0, 1], then there is no more than one solution
to the problem D1.

It is enough to prove that the homogeneous problem D1 admits the trivial
solution only. The proof will be given for an interior domain D. Let u0(x) be a
solution to the homogeneous problem D1 with F+(s) ≡ F−(s) ≡ 0, F (s) ≡ 0.
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Let S(d, ε) be a disc of a small enough radius ε with the center in the point
x(d) (d = a1

n or d = b1n, n = 1, ..., N1). Let Γ 1
n,ε be a set consisting of such

points of the curve Γ 1
n which do not belong to discs S(a1

n, ε) and S(b1n, ε). We
choose a number ε0 small enough so that the following conditions are satisfied:
1) for any 0 < ε ≤ ε0 the set of points Γ 1

n,ε is a unique nonclosed arc for each
n = 1, ..., N1,
2) the points belonging to Γ \ Γ 1

n are placed outside the discs S(a1
n, ε0),

S(b1n, ε0) for any n = 1, ..., N1,
3) discs of radius ε0 with centers in different ends of Γ 1 do not intersect.
Set Γ 1,ε = ∪N1

n=1Γ
1
n,ε, Sε =

(
∪N1
n=1[S(a1

n, ε) ∪ S(b1n, ε)]
)
, Dε = D \ Γ 1,ε \ Sε.

Since Γ 2 ∈ C2,λ, u0(x) ∈ C0(D \ Γ 1) (recall that u0(x) ∈ K1), and since
u0|Γ 2 = 0 ∈ C2,λ(Γ 2), and owing to the theorem on regularity of solutions of
elliptic equations near the boundary [GiTr77], we obtain u0(x) ∈ C1(D \Γ 1).
Since u0(x) ∈ K1, we observe that u0(x) ∈ C1(Dε) for any ε ∈ (0, ε0]. By
C1(Dε) we mean C1(Dε∪Γ 2∪ (Γ 1,ε)+∪ (Γ 1,ε)−∪∂Sε). Since the boundary of
a domain Dε is piecewise smooth, we write out Green’s formula [Vl81, p. 328]
for the function u0(x):

‖∇u0‖2L2(Dε) =
∫
Γ 1,ε

(u0)+
(
∂u0

∂nx

)+

ds

−
∫
Γ 1,ε

(u0)−
(
∂u0

∂nx

)−
ds−

∫
Γ 2
u0 ∂u

0

∂nx
ds+

∫
∂Sε

u0 ∂u
0

∂nx
dl.

We denote by nx the exterior (with respect to Dε) normal on ∂Sε at the
point x ∈ ∂Sε. By the superscripts + and − we denote the limiting values
of functions on (Γ 1)+ and on (Γ 1)−, respectively. Since u0(x) satisfies the
homogeneous boundary conditions (19.3) on Γ , we observe that u0|Γ 2 = 0
and (u0)±|Γ 1,ε = 0 for any ε ∈ (0, ε0]. Therefore,

‖∇u0‖2L2(Dε) =
∫
∂Sε

u0 ∂u
0

∂nx
dl, ε ∈ (0, ε0].

Setting ε → +0, taking into account that u0(x) ∈ K1, and using the re-
lationship (19.1), we obtain ‖∇u0‖2L2(D\Γ 1) = lim

ε→+0
‖∇u0‖2L2(Dε) = 0. From

the homogeneous boundary conditions (19.3) we conclude that u0(x) ≡ 0 in
D \ Γ 1, where D is an interior domain. If D is an exterior domain, then the
proof is analogous, but we have to use the condition (19.4) and the theorem
on behavior of a gradient of a harmonic function at infinity [Vl81, p. 373].
The maximum principle cannot be used for the proof of the theorem even in
the case of an interior domain D, since the solution to the problem may not
satisfy the boundary conditions (19.3) at the ends of the cracks, and it may
not be continuous at the ends of the cracks.
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19.3 Existence of a Classical Solution

Let us turn to solving the problem D1. Consider the double-layer harmonic
potential with the density μ(s) specified at the open arcs Γ 1:

w[μ](x) = − 1
2π

∫
Γ 1
μ(σ)

∂

∂ny
ln |x− y(σ)|dσ. (19.5)

Theorem 2. Let Γ 1 ∈ C1,λ, λ ∈ (0, 1]. Let S(d, ε) be a disc of a small enough
radius ε with the center in the point x(d) (d = a1

n or d = b1n, n = 1, ..., N1).
I. If μ(s) ∈ C0,λ(Γ 1), then w[μ](x) ∈ C0(R2 \ Γ 1 \X) and for any x ∈ S(d, ε)
such that x /∈ Γ 1 the inequality holds

|w[μ](x)| ≤ const.

II. If μ(s) ∈ C1,λ(Γ 1), then
1) ∇w[μ](x) ∈ C0(R2 \ Γ 1 \X);
2) for any x ∈ S(d, ε) such that x /∈ Γ 1, the following formulas hold:

∂w[μ](x)
∂x1

=
1
2π

∓μ(d)
|x− x(d)| sinψ(x, x(d)) +Ω1(x),

∂w[μ](x)
∂x2

=
1
2π

±μ(d)
|x− x(d)| cosψ(x, x(d)) +Ω2(x),

sinψ(x, x(d)) =
x2 − x2(d)
|x− x(d)| , cosψ(x, x(d)) =

x1 − x1(d)
|x− x(d)| ,

|Ωj(x)| ≤ const · ln 1
|x− x(d)| , j = 1, 2;

the upper sign in these formulas is taken if d = a1
n, while the lower sign is

taken if d = b1n;
3) for w[μ](x) the following relationship holds:

lim
ε→+0

∫
∂S(d,ε)

w[μ](x)
∂w[μ](x)
∂nx

dl = 0,

where the curvilinear integral of the first kind is taken over a circumference
∂S(d, ε), and nx = (− cosψ(x, x(d)),− sinψ(x, x(d))) is a normal at the point
x ∈ ∂S(d, ε), directed to the center of the circumference;

4) |∇w[μ](x)| belongs to L2(S(d, ε)) for any small ε > 0 if and only if
μ(d) = 0.

Class C0(R2 \ Γ 1 \X) is defined in Remark 1 to the definition of the class
K1 if we set D = R2. The proof of the theorem is based on the representation
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of a double-layer potential in the form of the real part of the Cauchy integral
with the real density μ(σ):

w[μ](x) = −ReΦ(z), Φ(z) =
1

2πi

∫
Γ 1
μ(σ)

dt

t− z , z = x1 + ix2,

where t = t(σ) = (y1(σ) + iy2(σ)) ∈ Γ 1. If μ(σ) ∈ C1,λ(Γ 1), then for z /∈ Γ 1:

dΦ(z)
dz

= −w′
x1

+ iw′
x2

= − 1
2πi

(
N1∑
n=1

{
μ(b1n)
t(b1n)− z

μ(a1
n)

t(a1
n)− z

}

−
∫
Γ 1

e−iα(σ)μ′(σ)
t− z dt

)
.

Points I, II.1, and II.2 of Theorem 2 follow from these formulas and from the
properties of Cauchy integrals, presented in [Mu68]. Points II.3 and II.4 can
be proved by direct verification by using points I, II.1, and II.2.

We will construct the solution to the problem D1 with the assumption
that F+(s), F−(s) ∈ C1,λ(Γ 1), λ ∈ (0, 1], F (s) ∈ C0(Γ 2). We will look for a
solution to the problem D1 in the form

u(x) = −w[F+ − F−](x) + v(x), (19.6)

where w[F+ − F−](x) is the double-layer potential (19.5), in which μ(σ) =
F+(σ) − F−(σ). The potential w[F+ − F−](x) satisfies the Laplace equa-
tion (19.2) in D \ Γ 1 and belongs to the class K1 according to Theorem 2.
The limiting values of w[F+ − F−](x) on (Γ 1)± are
w[F+ − F−](x)|x(s)∈(Γ 1)± = ∓(F+(s)− F−(s))/2 + w[F+ − F−](x(s)),

where w[F+ − F−](x(s)) is the direct value of the potential on Γ 1.
The function v(x) in (19.6) must be a solution to the following problem.

Problem D. Find a function v(x) ∈ C0(D) ∩ C2(D \ Γ 1), which obeys the
Laplace equation (19.2) in the domain D \ Γ 1 and satisfies the boundary
conditions
v(x)|x(s)∈Γ 1 = (F+(s) + F−(s))/2 + w[F+ − F−](x(s)) = f(s),
v(x)|x(s)∈Γ 2 = F (s) + w[F+ − F−](x(s)) = f(s).
(If x ∈ Γ 1, then w[F+ − F−](x) is the direct value of the potential on Γ 1.)
If D is an exterior domain, then we add the following condition at infinity:

|v(x)| ≤ const, |x| =
√
x2

1 + x2
2 →∞.

All conditions of the problem D have to be satisfied in a classical sense.
Obviously, w[F+ −F−](x(s)) ∈ C0(Γ 2). It follows from [Kr08, Theorem A.1]
that w[F+−F−](x(s)) ∈ C1,λ/4(Γ 1) (here by w[F+−F−](x(s)) we mean the
direct value of the potential on Γ 1). So, f(s) ∈ C1,λ/4(Γ 1) and f(s) ∈ C0(Γ 2).

We will look for the function v(x) in the smoothness class K.
We say that the function v(x) belongs to the smoothness class K if
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1. v(x) ∈ C0(D) ∩C2(D \ Γ 1), ∇v ∈ C0
(
D \ Γ 1 \ Γ 2 \X

)
, where X is a

point set consisting of the endpoints of Γ 1;
2. in a neighborhood of any point x(d) ∈ X for some constants C > 0,
δ > −1, the inequality |∇v| ≤ C|x − x(d)|δ holds, where x → x(d) and
d = a1

n or d = b1n, n = 1, . . . , N1.

The definition of the functional class C0
(
D \ Γ 1 \ Γ 2 \X

)
is given in

Remark 1 to the definition of the smoothness class K1. Clearly, K ⊂ K1, i.e.,
if v(x) ∈ K, then v(x) ∈ K1.

It can be verified directly that if v(x) is a solution to the problem D in
the class K, then the function (19.6) is a solution to the problem D1.

Theorem 3. Let Γ ∈ C2,λ/4, f(s) ∈ C1,λ/4(Γ 1), λ ∈ (0, 1], f(s) ∈ C0(Γ 2).
Then the solution to the problem D in the smoothness class K exists and is
unique.

Theorem 3 has been proved in the following papers:
1) in [Kr00-1], [Kr00-2] if D is an interior domain;
2) in [Kr98] if D is an exterior domain and Γ 2 �= ∅;
3) in [Kr97], [Kr05] if Γ 2 = ∅ and so D = R2 is an exterior domain.
In all these papers, the integral representations for the solution to the problem
D in the class K are obtained in the form of potentials, densities in which
are defined from the uniquely solvable Fredholm integro-algebraic equations
of the second kind and index zero. Uniqueness of a solution to the problem
D is proved either by the maximum principle or by the method of energy
(integral) identities. In the latter case we take into account that a solution to
the problem belongs to the class K. Note that the problem D is a particular
case of more general boundary value problems studied in [Kr00-2], [Kr98],
[Kr97], [Kr05].

Note that Theorem 3 holds if Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ 1), λ ∈
(0, 1], F (s) ∈ C0(Γ 2). From Theorems 2, 3 we obtain the solvability of the
problem D1.

Theorem 4. Let Γ ∈ C2,λ, F+(s), F−(s) ∈ C1,λ(Γ 1), λ ∈ (0, 1], F (s) ∈
C0(Γ 2). Then a solution to the problem D1 exists and is given by the for-
mula (19.6), where v(x) is a unique solution to the problem D in the class K,
ensured by Theorem 3.

Remark 2. Let us check that the solution to the problem D1 given by for-
mula (19.6) satisfies condition (19.1). Let d = a1

n or d = b1n (n = 1, ..., N1)
with r small enough; then substituting (19.6) in the integral in (19.1) we
obtain



www.manaraa.com

190 P.A. Krutitskii and N.Ch. Krutitskaya∫
∂S(d,r)

u(x)
∂u(x)
∂nx

dl =
∫

∂S(d,r)

w(x)
∂w(x)
∂nx

dl −
∫

∂S(d,r)

w(x)
∂v(x)
∂nx

dl

−
∫

∂S(d,r)

v(x)
∂w(x)
∂nx

dl +
∫

∂S(d,r)

v(x)
∂v(x)
∂nx

dl.

If r → 0, then the first term tends to zero by Theorem 2 (II.3). As mentioned
above, v(x) ∈ K ⊂ K1; therefore, condition (19.1) holds for the function v(x),
so the fourth term tends to zero as r → 0. The second term tends to zero as
r → 0, since w(x) is bounded at the ends of Γ 1 according to Theorem 2 (I),
and since v(x) satisfies condition 2) in the definition of the class K. Noting
that v(x) is continuous at the ends of Γ 1 owing to the definition of the class

K, and using Theorem 2 (II.2) for calculation of
∂w(x)
∂nx

in the third term, we

deduce that the third term tends to zero when r → 0 as well. Consequently,
the equality (19.1) holds for the solution to the problem D1 constructed in
Theorem 4.

Uniqueness of a solution to the problem D1 follows from Theorem 1. The
solution to the problem D1 found in Theorem 4 is, in fact, a classical solution.
Let us discuss under which conditions this solution to the problem D1 is not
a weak solution.

19.4 Nonexistence of a Weak Solution

Let u(x) be a solution to the problem D1 defined in Theorem 4 by the for-
mula (19.6). Consider a disc S(d, ε) with the center in the point x(d) ∈ X
and of radius ε > 0 (d = a1n or d = b1n, n = 1, ..., N1). In doing so, ε is
a fixed positive number, which can be taken small enough. Since v(x) ∈ K,
we have v(x) ∈ L2(S(d, ε)) and |∇v(x)| ∈ L2(S(d, ε)) (this follows from the
definition of the smoothness class K). Let x ∈ S(d, ε) and x /∈ Γ 1. It fol-
lows from (19.6) that |∇w[μ](x)| ≤ |∇u(x)|+ |∇v(x)|, whence |∇w[μ](x)|2 ≤
|∇u(x)|2 + |∇v(x)|2 + 2|∇u(x)| · |∇v(x)| ≤ 2(|∇u(x)|2 + |∇v(x)|2). Assume
that |∇u(x)| belongs to L2(S(d, ε)); then, integrating this inequality over
S(d, ε), we obtain ‖∇w‖2|L2(S(d,ε)) ≤ 2(‖∇u‖2|L2(S(d,ε)) + ‖∇v‖2|L2(S(d,ε))).
Consequently, if |∇u(x)| ∈ L2(S(d, ε)), then |∇w| ∈ L2(S(d, ε)). However,
according to Theorem 2, if F+(d) − F−(d) �= 0, then |∇w| does not be-
long to L2(S(d, ε)). Therefore, if F+(d) �= F−(d), then our assumption that
|∇u| ∈ L2(S(d, ε)) does not hold, i.e., |∇u| /∈ L2(S(d, ε)). Thus, if among num-
bers a1

1, ..., a
1
N1
, b11, ..., b

1
N1

there exists such a number d that F+(d) �= F−(d),
then for some ε > 0 we have |∇u| /∈ L2(S(d, ε)) = L2(S(d, ε) \ Γ 1), so
u /∈ W 1

2 (S(d, ε) \ Γ 1), where W 1
2 is a Sobolev space of functions from L2,

which have generalized derivatives from L2. We have proved the following.
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Theorem 5. Let the conditions of Theorem 4 hold, and among numbers

a1
1, .., a

1
N1
, b11, ..., b

1
N1

there exists such a number d, that F+(d) �= F−(d). Then the solution to the
problem D1, ensured by Theorem 4, does not belong to W 1

2 (S(d, ε) \ Γ 1) for
some ε > 0, whence it follows that it does not belong to W 1

2,loc(D \ Γ 1). Here
S(d, ε) is a disc of a radius ε with the center in the point x(d) ∈ X.

By W 1
2,loc(D \ Γ 1) we denote a class of functions, which belong to W 1

2 on
any bounded subdomain of D \Γ 1. If the conditions of Theorem 5 hold, then
the unique solution to the problem D1, constructed in Theorem 4, does not
belong to W 1

2,loc(D \ Γ 1), and so it is not a weak solution. We arrive at the
following corollary.

Corollary 1. Let the conditions of Theorem 5 hold. Then a weak solution to
the problem D1 in the class of functions W 1

2,loc(D \ Γ 1) does not exist.

Remark 3. Even if the number d, mentioned in Theorem 5, does not exist,
the solution u(x) to the problem D1, ensured by Theorem 4, may not be a
weak solution to the problem D1. A Hadamard example of nonexistence of
a weak solution to a harmonic Dirichlet problem in a disc with continuous
boundary data is given in [So88, Section 12.5] (the classical solution exists in
this example).

Clearly, L2(D \ Γ 1) = L2(D), since Γ 1 is a set of zero measure.
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20.1 Introduction

Roughly speaking, a quasimode for an operator with a discrete spectrum on a
Hilbert space can be defined as a pair (w̃,μ), where w̃ is a function approaching
a certain linear combination of eigenfunctions associated with the eigenvalues
of the operator in a “small interval” [μ− r, μ+ r]. The remainder r also deals
with the discrepancies between w̃ and the eigenfunctions.

The value of the quasimodes in describing asymptotics for low and high
frequency vibrations in certain singularly perturbed spectral problems, which
depend on a small parameter ε, has been made clear recently in many papers.
We refer to [Pe08] for an abstract general framework that can be applied to
several problems of spectral perturbation theory and to [LoPe03] and [SaSa89]
for a large variety of these problems. As a matter of fact, for these problems,
the spaces and the operators under consideration depend on the parameter
of perturbation, and the function w̃ and the numbers μ and r arising in the
definition of a quasimode can also depend on this parameter.

In this chapter we deal with the low frequencies for the homogenization of
a Steklov-type eigenvalue problem. Namely, we deal with harmonic functions
in a bounded domain Ω of R2 and periodic alternating boundary conditions

the periodicity of the structure. The model is of interest in geophysics, for
instance: see [BuIo06], [CaDa04], [IoDa02], and [Pe07].

In what follows we construct other quasimodes (w̃ε,με), with με = O(ε−1)
on different spaces from those in [Pe07]. This construction involves a new
formulation of the spectral problem (20.5) in functional spaces of traces of
functions on the part of the boundary where the Steklov-type conditions are
imposed. The value of the new quasimodes, as initial data, in the associated
second order evolution problems, is that they allow us to obtain estimates of
the time t in which standing waves of the type ei

√
μεtw̃ε approach the solutions

uε(t) of the evolution problems (cf. [Pe08] and [LoPe09]). These estimates
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depend on the discrepancies between the quasimodes and the eigenelements
of the spectral problem. For the sake of brevity, in this chapter, we only provide
the estimates for the discrepancies between quasimodes and eigenelements and
refer to [LoPe09] for estimates depending on the time parameter.

The structure of this chapter is as follows. In Section 20.1.1, we provide the
general abstract framework for spaces and operators depending on the per-
turbation parameter ε. In Section 20.2, we introduce the Steklov eigenvalue
problem under consideration (see (20.5)). We also introduce the quasimodes
constructed in [Pe07] and estimates for the discrepancies of these quasimodes
and the eigenelements of the spectral problem (see Theorem 1 and (20.7)).
Using these results, and considering spaces of traces, in Section 20.3 we con-
struct new quasimodes and obtain estimates for the discrepancies with the
eigenelements of the corresponding spectral problem (20.2).

20.1.1 The General Abstract Framework

Let us consider ε a small parameter ε ∈ (0, 1). Let Vε and Hε be two separable
Hilbert spaces and Vε ⊂ Hε, with dense and compact imbedding. Let aε(u, v)
be a sesquilinear, hermitian, continuous, and coercive form on Vε. We consider
Vε equipped with the scalar product inducted by aε(., .), namely < u, v >Vε=
aε(u, v). Let Aε ∈ L(Vε, (Vε)′) be the operator associated with the form aε,
namely, aε(u, v) =< Aεu, v >(Vε)′×Vε .

Let us assume that

‖u‖Hε ≤ C‖u‖Vε , ∀u ∈ Vε , (20.1)

where C is a constant independent of u and ε. Let us consider the associated
spectral problem: to find λε and uε ∈ Vε, uε �= 0 satisfying

aε(uε, v) = λε(uε, v)Hε , ∀v ∈ Vε . (20.2)

Let AεHε be the operator restriction of Aε to Hε, with domain of definition
D(AεHε) = {v ∈ Vε /Aεv ∈ Hε}. Then, Aε = (AεHε)−1, Aε : Hε −→ Hε is
a linear, self-adjoint, positive, and compact operator on Hε. The eigenvalues
of Aε (respectively Aε) are {λεi}∞

i=1 (respectively {(λεi )−1}∞
i=1), and the asso-

ciated eigenfunctions are {uεi}∞
i=1 which form an orthogonal basis in Hε and

Vε, uεi of norm 1 in Hε and of norm
√
λεi in Vε.

Also, for the sake of brevity, we shall refer to pairs (w̃ε, με) as quasimodes of
problem (20.2) with the remainder rε instead of quasimodes of the associated
operators Aε or Aε, which avoids specifying estimates in spaces either Hε or
Vε. Below we establish the closeness in the space Hε×R ( Vε×R, respectively)
of the eigenelements of the spectral problem (20.2) to a given quasimode
(cf. [OlSh92] and [Pe08] for general references and for details when applying
the results to singularly perturbed spectral problems):

Given a quasimode (w̃ε, με) for problem (20.2) with remainder rε, (w̃ε, με)
belonging to Hε×R, ‖w̃ε‖Hε = 1, in each interval [με−r∗,ε, με+r∗,ε] contain-
ing [με − rε, με + rε] there are eigenvalues of (20.2), {μεi(r∗,ε)+k}k=1,2,··· ,I(r∗)
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for some index i(r∗,ε) and some natural number I(r∗,ε) ≥ 1. In addition,
there is u∗,ε ∈ Hε, u∗,ε belonging to the eigenspace associated with all the
eigenvalues in the interval [με − r∗,ε, με + r∗,ε], satisfying

‖u∗,ε‖Hε ≤ C1 and ‖w̃ε − u∗,ε‖Hε ≤ C2
2rε

r∗,ε
. (20.3)

Here C1 and C2 are constants independent of ε, and the space Hε can be
taken to be either Hε or Vε depending on the operator under consideration.
Also, depending on this operator, μεj can denote λεj or (λεj)

−1 or even rescaled
eigenvalues.

20.2 The Homogenization of the Steklov Problem

Let Ω be an open bounded domain of R2+ with a Lipschitz boundary ∂Ω.
This boundary ∂Ω is assumed to be in contact with the line {x2 = 0}, ∂Ω =
Σ ∪ Σf ∪ ΓΩ , where the part of ∂Ω in contact {x2 = 0} is assumed to be
the union of Σf and Σ, Σ �= ∅ and Σf = (Ω ∩ {x2 = 0}) − Σ. Without any
restriction, we can assume Σ = (−1/2, 1/2)×{0} which we shall identify with
the interval (−1/2, 1/2) if no confusion arises. In the same way, in the case
where Σf �= ∅, we can assume that Σ ∩ ΓΩ = ∅.

For fixed ε, ε ∈ (0, 1), we consider Σ to be the union of segments Σεk of
length ε which we define as follows: For k = 0,±1,±2,±3, . . . ,±Nε, let T εk
(Σεk, G

ε
k, respectively) be the homothetic T 1 (Σ1, G1, respectively), of ratio

ε; centered at the point x̃k = (kεP, 0). Here, T 1 and Σ1 are segments centered
at the origin, T 1 � Σ1, G1 = Σ1 × (0,∞), ε is a small parameter that we
shall make to go to zero, P is a fixed number, P > 0, and 2Nε + 1 denotes
the number of Σεk contained in Σ, Nε = O(ε−1).

If no confusion arises, we shall write
⋃
T ε (

⋃
Σε,

⋃
Gε, respectively)

to denote
⋃Nε

i=−Nε
T εi (

⋃Nε

i=−Nε
Σεi ,
⋃Nε

i=−Nε
Gεi , respectively). Also, it is self-

evident that for each fixed k the change of variable

y =
x− x̃k
ε

(20.4)

transforms T εk , Σεk, and Gεk into T 1, Σ1, and G1, respectively.
Let us consider the spectral problem⎧⎪⎨⎪⎩

−Δuε = 0 in Ω ,
uε = 0 on ∂Ω \⋃T ε,

∂uε

∂x2
+ βεuε = 0 on

⋃
T ε ,

(20.5)

whose variational formulation reads: Find βε and uε ∈ Vε, uε �= 0, satisfying∫
Ω

∇uε.∇v dx = βε
∫⋃

T ε

uεv dx1 , ∀v ∈ Vε . (20.6)
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Here, Vε denotes the space completion of {v ∈ D(Ω) / v = 0 on ∂Ω \⋃T ε}
with the norm

‖v‖2ε =
∫
Ω

|∇v|2 dx . (20.7)

The elements of Vε vanish on ΓΩ ∪Σf ∪ (Σ \⋃T ε) (namely, on ∂Ω \⋃T ε),
and they satisfy∫

Σ

u2 dx1 =
∫⋃

T ε

u2 dx1 ≤ Cε
∫
Ω

|∇u|2 dx , ∀u ∈ Vε, (20.8)

where C is a constant independent of ε and u (cf. [Pe07]).
For fixed ε, the problem (20.6) can be written as an eigenvalue problem for

a nonnegative, self-adjoint, compact operator Aε on the space Vε as follows:
Find με (με = 1/βε) and uε ∈ Vε, uε �= 0 satisfying

Aεuε = μεuε, where < Aεu, v >=
∫⋃

T ε

uv dx1, ∀u, v ∈ Vε . (20.9)

Now, the eigenvalue 0 has the associated eigenspace

Ker(Aε) = {u ∈ Vε/u = 0 on
⋃
T ε} ≡ H1

0 (Ω), (20.10)

and the rest of the spectrum, which is discrete, is denoted by {(βεi )−1}∞
i=1,

where {βεi }∞
i=1 are the set of eigenvalues with finite multiplicity of (20.6),

βεi →∞ as i→∞, with the convention of repeated indices.
Let {uεi}∞

i=1 be the set of associated eigenfunctions which are assumed to
be orthonormal in Vε. They form an orthonormal basis in the space comple-
ment orthogonal to Ker(Aε) in Vε. This orthogonal space identifies with the
functions of Vε which are harmonic functions in Ω, namely,

Ker(Aε)⊥ ⊂ {u ∈ H1(Ω) /Δu = 0 in Ω, and u = 0 on ∂Ω\
⋃
T ε} . (20.11)

The minimax principle allows us to assert that βεi = O(ε−1), and results
in [Pe07] show that the limit behavior of the rescaled eigenvalues βεi ε and the
associated eigenfunctions is involved with the first eigenelement of the local
problem (20.12).

The eigenvalue local problem in the half-band G1 is: Find (β0, V 0) ∈
R+ ×V1, V 0 �= 0, satisfying∫

G1
∇yV 0.∇yV dy = β0

∫
T 1
V 0V dy1 , ∀V ∈ V1 . (20.12)

Here y is the local variable defined by (20.4), and V1 denotes the space com-
pletion of {V ∈ D(G1), V = 0 on Σ1\T 1, V (y1, y2) is y1-periodic in G1} with
the norm generated by the scalar product

(U, V )V1 =
∫
G1
∇yU.∇yV dy .
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As is known, the solutions V 0 of (20.12) are harmonic functions in G1

satisfying V 0(y) → cV 0 as y2 → +∞ , where cV0 is an unknown but well-
determined constant and (20.12) has a discrete spectrum. We refer to [Pe07]
for details of proofs.

20.2.1 The Construction Quasimodes for (20.5)

For each eigenfunction V 0 of (20.12), ‖V 0‖V1 = 1, let wε(x) be the function
defined by

wε(x1, x2) = V 0(y1, y2) for (x1, x2) ∈ Gε0 = εG1 (20.13)

and extended by periodicity to all the half-bands Gεi such that the corre-
sponding Σεi are contained in Σ. For simplicity, without any restriction, we
can assume that the T εi do not cut the extremes x1 = ±1/2 of the interval
Σ = [−1/2, 1/2] (cf. [Pe07] in this connection).

Let us consider the cutoff function ηε,

ηε(x) = η
(
x2δε

−1) , (20.14)

where δε → 0 as ε → 0 and η is a smooth function with a compact support,
supp (η′) ⊂ [13 ,

2
3 ],

η ∈ C1(R), 0 ≤ η ≤ 1 , η(t) = 1 for t ≤ 1
3

and η(t) = 0 for t ≥ 2
3
.

For each fixed V 0(y) solution of (20.12), the function δε can be chosen to be

δε = k̃ε| ln ε| , (20.15)

where k̃ is a constant which depends on V 0. More specifically, for any fixed
positive integer J , J ≥ 2, we can determine k̃ depending on V 0 and J , namely
k̃ = k̃(V 0, J), that ensures the existence of a constant C̃ = C̃(V 0) and of
εJ > 0, εJ depending on V 0 and J , such that the estimates

|V 0(y)− cV 0 | ≤ C̃εJ and |∇yV 0(y)| ≤ C̃εJ (20.16)

hold for ε < εJ and y2 > δε3−1ε−1. We refer to [Pe07] and [PaPe07] for proofs.
Let us denote by wεηε = wε(x)ηε(x) the function V 0(x/ε) extended by

periodicity to all the Σεi contained in Σ and multiplied by the function ηε(x)
which is only dependent on x2. wεηε is a periodic function of the x1 variable
which vanishes on Σ \⋃T ε. It also vanishes for x2 > (2/3)k̃ε | ln ε| and takes
the value of wε(x) for 0 ≤ x2 ≤ (1/3)k̃ε | ln ε|.

Let ΩΣ be the domain Ω ∩ (Σ × (0,∞)). In the case where Σf = ∅ it is
clear that ΩΣ = Ω. But, even if we assume that ΩΣ = Ω, we cannot assert
that wεηε ∈ Vε since it does not necessarily vanish near ΓΩ ∩{x2 = 0}. From
this function we construct another which satisfies this condition also in the
case where Σf �= ∅.
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For any fixed intervals (a, b) and (c, d) contained in Σ, (a, b) � (c, d) (i.e.,
(a, b) � (c, d) ⊂ (−1/2, 1/2)), let ψ be a function

ψ ∈ C∞
0 (R) , 0 ≤ ψ ≤ 1, ψ(x1) = 1 if x ∈ [a, b], ψ(x1) = 0 if x1 /∈ (c, d) .

Then, we define the boundary layer function wεηεψ, concentrating its support
in a small region near Σ,

(wεηεψ)(x) = wε(x1, x2)ηε(x2)ψ(x1) . (20.17)

Obviously, wεηεψ ∈ Vε, where now the function ηεψ ∈ C∞
0 (R2) satisfies:

ηεψ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if (x1, x2) ∈ [a, b]× [0, (1/3)k̃ε | ln ε|]
ψ(x1) if 0 ≤ x2 ≤ (1/3)k̃ε | ln ε|
ηε(x2) if a ≤ x1 ≤ b
0 if x2 ≥ (2/3)k̃ε | ln ε|
0 if (x1, x2) ∈ Ω, and x1 /∈ Σ .

Note that from the definition of wεηεψ, we can assume that wε is extended
by periodicity over the whole half-plane R2+. We gather bounds and properties
for wε in Proposition 1 in Section 20.3. Some of these properties, namely,
estimates (20.22), (20.23), and (20.24), are used in [Pe07] to prove the results
in the following theorem.

Theorem 1. Let (β0, V 0) be any eigenelement of (20.12), V 0 with norm 1
in V1 (that is,

∫
G1 |∇yV 0|2 dy = 1). There exists a sequence dε, dε → 0, as

ε→ 0, such that there are eigenvalues βε of (20.6) with εβε ∈ [β0−dε, β0+dε]
(or equivalently, such that (βε)−1 ∈ [ε(β0)−1 − rε, ε(β0)−1 + rε] for rε =
O(dεε)).

In addition, there are ũε, with
∫
Ω
|∇ũε|2 dx = 1, ũε in the eigenspace of

all the eigenfunctions uε of (20.6) associated with the eigenvalues βε such
that εβε ∈ [β0 − d̃ε, β0 + d̃ε] (or equivalently, such that (βε)−1 ∈ [ε(β0)−1 −
r̃ε, ε(β0)−1 + r̃ε] for r̃ε = O(d̃εε), ε(β0)−1 > r̃ε), with d̃ε → 0 and dε/d̃ε → 0
as ε→ 0 (or equivalently, r̃ε → 0 and rε/r̃ε → 0 as ε→ 0), and ũε satisfying∫

Ω

|∇(ũε − αεwεηεψ)|2 dx ≤ C
(rε
r̃ε
)2
, (20.18)

where αε is the constant

αε =
(∫

Ω

|∇(wεηεψ)|2 dx
)−1/2

, (20.19)

C is a constant independent of ε, and the functions wεηεψ are defined
in (20.13)–(20.17). The sequences dε and rε can be taken as follows:

dε = K1| ln ε|−1/2 , and rε = K2ε| ln ε|−1/2, (20.20)
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where K1, K2 are certain constants independent of ε. Also, sequences d̃ε and
rε/r̃ε = dε/d̃ε can be chosen in order to get either smaller intervals [β0 −
d̃ε, β0 + d̃ε] or improved bounds (20.18).

Moreover, considering ε(β0)−1 > r̃ε and (20.20), possible choices of r̃ε are

r̃ε = K3ε| ln ε|−β , with K3 any constant and 0 < β <
1
2
. (20.21)

In particular, dε/d̃ε = rε/r̃ε = O(| ln ε|−1/4) is one of these possible choices.

Remark 1. We refer to [Pe07] for the proof of Theorem 1 and further results
obtained from the statement. As a matter of fact, applying results in The-
orem 1 allows us to assert that each eigenvalue β0 of (20.12) is an accumu-
lation point of the rescaled eigenvalues εβε of (20.6). In addition, as regards
the eigenfunctions, for any eigenfunction V 0 associated with the eigenvalue
β0 of (20.12), and sufficiently small ε, functions αε(wεηεψ) are called the
quasimodes of (20.5), approaching linear combinations of eigenfunctions ũε

in small intervals, as stated in Theorem 1. The norm used for the approach
is (20.7), and considering the support of (wεηεψ), we can assert that these
eigenfunctions {ũε}ε>0 concentrate their support asymptotically in a thin
layer of width O(ε| ln ε|) around a part of the boundary Σ (in which the
supp(ψ) is contained) and they vanish outside.

20.3 The Modified Quasimodes for (20.5)

The aim of this section is to construct quasimodes for problem (20.6) from
those in Section 20.2, which involve spaces, forms, operators, and evolution
problems derived from the framework in Section 20.1.1.

It should be emphasized that formulation (20.6) [(20.5), respectively] in
Vε does not amount to (20.2). For the sake of brevity here we only outline
forms and spaces arising in the framework (20.1) and (20.2) for (20.5). We
refer to [Gr92] for details of definitions of spaces of traces and to [LoPe09] for
proofs.

We first assume that Σf �= ∅ and we denote Γ 0 = ∂Ω∩{x2 = 0}. Then, we
consider Vε the space formed by the traces on Γ0 of the elements of Ker(Aε)⊥

(see definition (20.11)), which is an eigenspace of H̃1/2(Γ0) whose elements
vanish outside

⋃
T ε. Let us define Hε the space completion of Vε in L2(Γ0).

Then, we define

aε(f, g) = 〈Aεf, g〉(Vε)′×Vε , ∀f, g ∈ Vε

where Aε is the operator from Vε into (Vε)′ defined by Aεf = χ⋃T ε
∂Uf

∂x2

∣∣
Γ0

,

Uf being the element of Ker(Aε)⊥, such that Uf |Γ0 = f , and χ⋃T ε the
characteristic function of the set

⋃
T ε. With the notation above, it can be
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verified that the eigenelements (uε, βε) of (20.6) provide the eigenelements
(uε|Γ0 , β

ε) of (20.2).
In order to obtain estimates for the discrepancies between the quasimodes

and the eigenfunctions in Theorem 2 below, we introduce some properties for
the functions wε defined by (20.13) in the following proposition (cf. [Pe07] for
the proof of some of these properties and further references on the technique).

Proposition 1. Let wε be the functions defined by (20.13) and extended by
periodicity to R2+, wε ∈ H1

loc(R
2+). They satisfy the estimates

ε‖∇wε‖2L2(ΩΣ) ≤ C(V 0) , (20.22)

‖wε‖2L2(ΩΣ) ≤ C(V 0) , (20.23)

‖wε‖2L2(ΩΣ∩{x2<ε}) ≤ εC(V 0) , (20.24)

for sufficiently small ε, where C(V 0) is a constant independent of ε.
In addition, for the functions wεηεψ in (20.17) and the constants αε

in (20.19), and for sufficiently small ε, we have

C̃1(V 0)ε−1 ≤ ‖∇(wεηεψ)‖2L2(Ω) ≤ C̃2(V 0)ε−1 , (20.25)

and
c̃1(V 0)

√
ε ≤ αε ≤ c̃2(V 0)

√
ε , (20.26)

where C̃1(V 0), C̃2(V 0), c̃1(V 0), and c̃2(V 0) are strictly positive constants in-
dependent of ε.

Proof. Estimates (20.22)–(20.24) and the left-hand side of (20.25) have been
proved in [Pe07], while (20.26) is a direct consequence of (20.19) and (20.25).
Therefore, the right-hand side of (20.25) is yet to be proved.

Since supp(ψ) ⊂ Σ, the integrals below affect only ΩΣ . We also assume
that C and CV 0 always denote certain constants independent of ε.

‖∇(wεηεψ)‖2L2(Ω) =
∫
ΩΣ

|∇(wεηεψ)|2 dx

≤ C
(∫

ΩΣ

|∇wε|2(ηεψ)2 dx+
∫
ΩΣ

(wε)2 |∇(ηεψ)|2 dx
)
.

From (20.22) and because (ηεψ)2 ≤ 1, the first integral above is bounded by
C CV 0ε−1 . Let us consider the second integral. From the definition for ηε and
ψ, we can write∫

ΩΣ

(wε)2 |∇(ηεψ)|2 dx

≤ C
(∫

ΩΣ

(wε)2
∣∣∣∣∂ηε∂x2

∣∣∣∣2 (ψ)2dx+
∫
ΩΣ

(wε)2 (ηε)2
∣∣∣∣ ∂ψ∂x1

∣∣∣∣2 dx
)
. (20.27)
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Now from the bounds for |ψ′(x1)| and ηε(x) by constants independent
of ε and from (20.23) we have that the last integral on the right-hand side
of (20.27) is bounded by a constant independent of ε. As for the first integral
inside the brackets, we have∫

ΩΣ

(wε)2
∣∣∣∣∂ηε∂x2

∣∣∣∣2 (ψ)2dx ≤ C 1
(δε)2

∫
ΩΣ∩{x2∈[δε/3,2δε/3]}

(wε(x))2 dx

as a consequence of the bound for ψ. Now, performing the change of variable
in the last integral from x to y, and taking into account the definition by
periodicity of wε ((cf. (20.13), (20.14), (20.15), and (20.16)) we are led to
write

∫
ΩΣ

(wε)2
∣∣∣∣∂ηε∂x2

∣∣∣∣2 (ψ)2dx ≤ ε2

δ2ε

Nε∑
i=−Nε

∫
G1∩{y2∈[δε3−1ε−1, 2δε3−1ε−1]}

|V 0(y)|2 dy

≤ C(2Nε + 1)
ε2

δ2ε

∫
G1∩{y2∈[δε3−1ε−1, 2δε3−1ε−1]}

|V 0(y)− cV 0 |2 dy

+ C(2Nε + 1)
ε2

δ2ε

∫
G1∩{y2∈[δε3−1ε−1, 2δε3−1ε−1]}

(cV 0)2 dy .

Next, we prove that each integral in the above inequality is bounded by
CV 0ε−1.

Indeed, on account of Nε = O(ε−1) (20.15), we have for the last integral

C(2Nε + 1)
ε2

δ2ε

∫
G1∩{y2∈[δε3−1ε−1, 2δε3−1ε−1]}

(cV 0)2 dy ≤ C 1
δε

≤ C 1
k̃ε| ln ε|

<
CV 0

ε
.

On the other hand, with the same argument it suffices to take J = 2 in (20.15)
and (20.16), and sufficiently small ε, namely ε < εJ , to obtain

C(2Nε + 1)
ε2

δ2ε

∫
G1∩{y2∈[δε3−1ε−1, 2δε3−1ε−1]}

|V 0(y)− cV 0 |2 dy ≤ C ε
4

δε
<
CV 0

ε
.

Therefore, the first integral on the right-hand side of (20.27) is bounded
by CV 0ε−1 and the right-hand side of (20.25) also holds. Hence, all the in-
equalities in the statement of the proposition hold.

Theorem 2. Let (β0, V 0) be any eigenelement of (20.12), V 0 with norm 1
in V1 (that is,

∫
G1 |∇yV 0|2 dy = 1). With the same notation as in Theo-

rem 1, let w̃ε be the projection of wεηεψ into Ker(Aε)⊥. Then, there are
u∗,ε ∈ Ker(Aε)⊥, each u∗,ε being a linear combination of the eigenfunc-
tions associated with the eigenvalues βε such that εβε ∈ [β0 − d̃ε, β0 + d̃ε]
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(or equivalently, such that (βε)−1 ∈ [ε(β0)−1 − r̃ε, ε(β0)−1 + r̃ε] ), such that
‖u∗,ε‖L2(Σ) ≤ c̃ and the inequality∥∥∥∥u∗,ε − w̃ε

‖w̃ε‖L2(Γ0)

∥∥∥∥
L2(Γ0)

=
∥∥∥∥u∗,ε − w̃ε

‖w̃ε‖L2(Σ)

∥∥∥∥
L2(Σ)

≤ C̃ r
ε

r̃ε
(20.28)

hold. Here c̃ and C̃ are constants independent of ε, and rε and r̃ε the order
functions defined by (20.20) and (20.21).

Proof. On account of (20.10), (20.11), and Vε = H1
0 (Ω)

⊕
Ker(Aε)⊥, we

can consider wεηεψ = w̃ε + W ε, where W ε ∈ H1
0 (Ω) and w̃ε denotes the

projection of wεηεψ into Ker(Aε)⊥. That is, w̃ε ∈ Vε and it is harmonic in
Ω. Since the functions ũε constructed in Theorem 1 are linear combinations
of eigenfunctions of (20.6), they are already harmonic functions belonging to
Ker(Aε)⊥ and the estimates (20.18) also hold, for ũε and αεw̃ε. Specifying,
we can write ∥∥(αε)−1ũε − w̃ε

∥∥
Vε ≤ C

rε

r̃ε
1
αε
, (20.29)

for a certain constant C independent of ε, and for αε, rε, and r̃ε defined
by (20.19), (20.20), and (20.21), respectively.

Let us note that, since all the functions above vanish on Σf , without any
restriction we can consider indifferently norms in L2(Γ0) or L2(Σ).

Then, considering (20.8) and (20.26), from (20.29) we can write∥∥ũε(αε)−1 − w̃ε
∥∥
L2(Σ) ≤ C

rε

r̃ε
. (20.30)

In order to get estimates of the type (20.3) for u∗,ε = ũε(αε‖w̃ε‖L2(Σ))−1,
w̃ε = w̃ε‖w̃ε‖−1

L2(Σ), and Hε = {u ∈ L2(Γ0), u = 0 in Γ0\
⋃
T ε}, let us consider

‖w̃ε‖L2(Σ) and prove that it is bounded by some constant independent of ε.
Indeed, by construction we can write

‖w̃ε‖2L2(Σ) = ‖w̃ε +W ε‖2L2(Σ) = ‖wεηεψ‖2L2(Σ) = ‖wεψ‖2L2(Σ) .

Consequently, for the interval (a, b) arising in the definition (20.17), we have

‖wε‖2L2(a,b) ≤ ‖w̃ε‖
2
L2(Σ) ≤ ‖wε‖

2
L2(Σ) , (20.31)

and considering the definition of wε by periodicity from V 0(y), the integrals
on the left- and right-hand sides of the above inequalities can be replaced by

N1
ε ε

∫
T 1

(V 0(y1, 0))2 dy1 and (2Nε + 1) ε
∫
T 1

(V 0(y1, 0))2 dy1 ,

respectively, where N1
ε and (2Nε + 1) are the number of T ε contained in the

segments [a, b] and Σ, respectively. Since both of them are of the order O(ε−1),
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for sufficiently small ε, the norm ‖w̃ε‖L2(Σ) is bounded from below and from
above by constants independent of ε. Thus, from (20.31) and (20.30), we have∥∥∥∥ ũε

αε ‖w̃ε‖L2(Σ)

∥∥∥∥
L2(Σ)

≤ c̃ and
∥∥∥∥ ũε

αε ‖w̃ε‖L2(Σ)
− w̃ε

‖w̃ε‖L2(Σ)

∥∥∥∥
L2(Σ)

≤ C̃ r
ε

r̃ε
,

for certain constants C̃ and c̃ independent of ε. Thus, we deduce that u∗,ε =
ũε(αε ‖w̃ε‖L2(Σ))−1 satisfies (20.28), and also the rest of the properties in the
statement of the theorem are satisfied. Therefore, the theorem is proved.

Remark 2. Theorem 2 provides us with the estimates (20.3) arising in the
definition of quasimodes for the functions u∗,ε = ũε(αε‖w̃ε‖L2(Σ))−1 and w̃ε =
w̃ε‖w̃ε‖−1

L2(Σ), the space Hε = {u ∈ L2(Γ0), u = 0 in Γ0 \
⋃
T ε} (equivalently,

Hε = Hε) and the numbers με = β0ε−1 and r̃ε = r∗,ε. In this connection,
note that the square of the norms in L2(Γ0) or L2(Σ) in Theorem 2 can be
replaced by the square of the norm in

∏Nε

i=−Nε
L2(T εi ).

Remark 3. Also, note that without considering the normalization of the new
quasimodes in Hε, bounds for the discrepancies ‖ũε − αεw̃ε‖Hε which im-
prove (20.28) can be obtained. Now, Hε could be either the space Hε or
Vε (cf. [LoPe09]).
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Asymptotic Analysis of Spectral Problems in
Thick Multi-Level Junctions

T.A. Mel’nyk

National Taras Shevchenko University of Kyiv, Ukraine; melnyk@imath.kiev.ua

21.1 Introduction and Statement of the Problem

Spectral boundary-value problems are considered in a new kind of perturbed
domain, namely, thick multi-level junctions. Boundary-value problems in thick
one-level junctions (thick junctions) have been intensively investigated re-
cently (see, for instance, [BlGaGr07], [BlGaMe08], [Me08] and, the references
there). In [MeNa97]–[Me(3)01], classification of thick one-level junctions was
given and basic results were obtained both for boundary-value and spectral
problems in thick junctions of different types. It was shown that qualitative
properties of solutions essentially depend on the junction type and on the con-
ditions given on the boundaries of the attached thin domains. It is known that
the asymptotic behavior of the spectrum of a perturbed spectral problem is
highly sensitive to perturbation, and it is unexpected. This was also observed
for spectral problems in thick junctions with Neumann conditions ([MeNa97]
and [Me00]), with Dirichlet conditions ([Me99] and [Me(3)01]), with Fourier
conditions ([Me(2)01]) and with Steklov ones ([Me(1)01]).

The approach of paper [Me06], where a problem in a plane
thick two-level junction was considered, and the abstract scheme developed
in [Me(4)01] are used to investigate the spectral problem discussed here.

21.1.1 Statement of the Problem

Let B be a finite union of smooth plane domains which do not intersect or
touch. In addition, the set B is strictly included in the square � := {ξ′ =
(ξ1, ξ2) : 0 < ξ1 < 1, 0 < ξ2 < 1}. Let us divide B into two classes:
B(1) =

⋃K1
k=1B

(1)
k and B(2) =

⋃K2
k=1B

(2)
k .

A model thick two-level junction Ωε consists of the junction body Ω0 =
{x ∈ R3 : x′ = (x1, x2) ∈ Q, 0 < x3 < γ(x′)}, and a large number of thin
cylinders G(m)

ε = ∪Km

k=1G
(m)
ε (k),
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Fig. 21.1. The cell of the alternation.

G(m)
ε (k) =

⋃N−1

i,j=0

{
x : (x1

ε − i, x2
ε − j) ∈ B

(m)
k , x3 ∈ (−dm, 0]

}
, m = 1, 2.

In this case Q = (0, a) × (0, a), γ is a smooth and a-periodic function,
minx′∈Q γ(x

′) = γ0 > 0, N is a large natural number, and ε = a/N is a small
discrete parameter that characterizes the distance between nearby thin cylin-
ders and their thickness; 0 < d2 ≤ d1. Thus, Ωε = Ω0

⋃
Gε, Gε = G

(1)
ε
⋃
G

(2)
ε .

The thin cylinders Gε are divided into two levels G(1)
ε and G(2)

ε depending
on their length, and they are ε-periodically alternated along the Ox1-direction
and Ox2-direction and they are joined with Ω0 over the ε-homothetic images
ε
(
(i, j) + B

(1)
k

)
, i, j = 0, 1, . . . , N − 1, k = 1, . . . ,K1, and ε

(
(i, j) + B

(2)
k

)
,

i, j = 0, 1, . . . , N−1, k = 1, . . . ,K2, of the classes B(1) and B(2), respectively.
A cell of the alternation is shown in Figure 21.1.

In Ωε we consider the following spectral problem:

−Δx uε(x) = λ(ε)uε(x), x ∈ Ωε;
∂νu

ε(x) = −ε κ1 u
ε(x), x ∈ S(1)

ε ;

∂νu
ε(x) = −ε κ2 u

ε(x), x ∈ S(2)
ε ;

∂px1
uε|x1=0 = ∂px1

uε|x1=a, (x2, x3) ∈ (0, a)× (0, γ(0, x2)), p = 0, 1;
∂px2
uε|x2=0 = ∂px2

uε|x2=a, (x1, x3) ∈ (0, a)× (0, γ(x1, 0)), p = 0, 1;
∂νu

ε(x) = 0, x ∈ Γε,
(21.1)

with the Fourier conditions (κ1, κ2 are positive constants) on S(m)
ε (the union

of the lateral surfaces of the cylinders G(m)
ε from the mth level, m = 1, 2),

with the periodic condition on the lateral faces Γ0 of the junction body Ω0,
and with the Neumann conditions on Γε = ∂Ωε \

(
S

(1)
ε ∪ S(2)

ε ∪ Γ0
)
.
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The aim is to study the asymptotic behavior of the spectrum of prob-
lem (21.1) and corresponding eigenfunctions as ε→ 0, i.e., when the number
of attached thin cylinders from each level infinitely increases and their thick-
ness vanishes.

21.2 Special Integral Identities and Extension Operators

To homogenize boundary-value problems in thick multi-structures with non-
homogeneous Neumann, Fourier, or nonlinear conditions on the boundaries
of the thin attached domains, the method of special integral identities was
proposed in [Me(1)01], [Me(2)01], [Me08]. Following [Me(2)01], [Me08], for
the 1-periodic continuations with respect to ξ1 and ξ2 of the solutions Y (m)

k ,
k = 1, . . . ,Km, m = 1, 2, of the problems

ΔξY
(m)
k (ξ) = p

(m)
k

|B(m)
k

|
, ξ ∈ B(m)

k ; ∂νY
(m)
k = 1, ξ ∈ ∂B(l)

k ; 〈Y (m)
k 〉

B
(m)
k

= 0,

where 〈Y (m)
k 〉

B
(m)
k

=
∫
B

(m)
k

Y
(m)
k (ξ)dξ, we derive the integral identities

ε

∫
S

(m)
ε

vdσx =
Km∑
k=1

∫
G

(m)
ε (k)

(
p
(m)
k

|B(m)
k

|
v + ε∇ξY (m)

k |ξ= x′
ε
· ∇x′v

)
dx (21.2)

for all v ∈ H1
(
G

(m)
ε

)
,m = 1, 2. Here |B(m)

k |, p(m)
k are the area and perimeter

of the two-dimensional domain B(m)
k .

In Hε := {u ∈ H1(Ωε) : u is a-periodic on Γ0} we define the norm
‖ · ‖ε,k1,k2 that is generated by the following scalar product:

〈u, v〉ε,κ1,κ2 =
∫
Ωε

∇u · ∇v dx + ε κ1

∫
S

(1)
ε

u v dσx + ε κ2

∫
S

(2)
ε

u v dσx.

It is easy to prove that the norms ‖ · ‖H1(Ωε) and ‖ · ‖ε,κ1,κ2 are uniformly
equivalent with respect to ε. Define Aε : Hε �→ Hε by the following equality:

〈Aεu, v〉ε,κ1,κ2 =
∫
Ωε

u(x) v(x) dx ∀ u, v ∈ Hε. (21.3)

Obviously, operator Aε is self-adjoint, positive, and compact. Thus, prob-
lem (21.1) is equivalent to the spectral problem Aεu = λ−1(ε)u in Hε and for
each fixed ε > 0 there is a sequence of eigenvalues

0 < c0 ≤ λ1(ε) ≤ · · · ≤ λn(ε) ≤ · · · → +∞, (21.4)

and a sequence of the eigenfunctions {uεn}:
(
uεn, u

ε
m

)
L2(Ωε) = δn,m, n, m ∈ N.

By the minimax principle for eigenvalues, we have λn(ε) ≤ C1(n); then
with the help of (21.2) we get ‖uεn‖H1(Ωε) ≤ C2(n) for any n ∈ N.

Using the scheme of construction of extension operators (see [Me(4)01])
and integral identities (21.2), we can prove the following theorem.
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Theorem 1. There exist extension operators P(m,k)
ε : H1

(
Ω0 ∪ G(m)

ε (k)
)
�→

H1(Ωm) such that ∀ n ∈ N ∃C > 0 ∃ ε0 > 0 ∀ ε ∈ (0, ε0):

2∑
m=1

Km∑
k=1

‖ P(m,k)
ε uεn ‖H1(Ωm)≤ C ‖ uεn ‖H1(Ωε),

where Ωm = Ω0 ∪Dm, Dm = Q× (−dm, 0), m = 1, 2.

21.3 Convergence Theorem and Homogenized Problem

With the help of the extension operators constructed in Theorem 1 and iden-
tities (21.2) we establish the following convergences.

Theorem 2. Let λ(ε) be an eigenvalue of problem (21.1) and let uε be the
corresponding eigenfunction whose ‖uε‖L2(Ωε) = 1. Let λ(ε) → μ0, uε|Ω0 →
v+0 weakly in H1(Ω0), and for each m = 1, 2 and k = 1, . . . ,Km the restriction(
P(m,k)
ε uε

)
|Dm

→ vm,k0 weakly in H1(Dm) as ε→ 0.
Then μ0 is an eigenvalue and the multi-sheeted function v0 such that

v0|Ω0 = v+0 , v0|Dm
= vm,k0 , m = 1, 2, k = 1, . . . ,Km, is the corresponding

eigenfunction of the homogenized spectral problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δx v+0 = μ0 v
+
0 in Ω0,

v+0 is a-periodic on Γ0, ∂νv
+
0 = 0 on ∂Ω0 \ (Γ0 ∪Q),

−|B(m)
k | ∂2

x3
vm,k0 + κm p

(m)
k vm,k0 = μ0 |B(m)

k | vm,k0 in Dm,

vm,k0 |x3=0 = v+0 |x3=0,
(
∂x3v

m,k
0

)
|x3=−dm

= 0,

m = 1, 2, k = 1, . . . ,Km,∑2
m=1
∑Km

k=1 |B
(m)
k | ∂x3v

m,k
0 (x′, 0) = ∂x3v

+
0 (x′, 0) on Q.

(21.5)

We write V0 := L2(Ω0)×L2(D1)× · · · × L2(D1)︸ ︷︷ ︸
K1

×L2(D2)× · · · × L2(D2)︸ ︷︷ ︸
K2

with the inner product(
u,v
)
V0

=
∫
Ω0

u0v0 dx +
∑2

m=1

∑Km

k=1
|B(m)
k |

∫
Dm

u
(m)
k v

(m)
k dx,

where
u =
(
u0, u

(1)
1 , . . . , u

(1)
K1
, u

(2)
1 , . . . , u

(2)
K2

)
and

v =
(
v0, v

(1)
1 , . . . , v

(1)
K1
, v

(2)
1 , . . . , v

(2)
K2

)
.
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Define the Hilbert space H0 = {u ∈ V0 : u0 ∈ H1(Ω0), u0 is a-periodic
on Γ0; ∃ ∂x3u

(m)
k ∈ L2(Dm) and u0|Q = u

(m)
k |Q for any m = 1, 2, k =

1, . . . ,Km} with the scalar product

(
u,v
)
H0

=
∫
Ω0

∇u0 · ∇v0 dx

+
∑2

m=1

∑Km

k=1

∫
Dm

(
|B(m)
k | ∂x3u

(m)
k ∂x3v

(m)
k + κm p

(m)
k u

(m)
k v

(m)
k

)
dx.

Problem (21.5) is equivalent to the spectral problem A0v0 = μ−1
0 v0 in

H0, where the operator A0 : H0 �→ H0 is defined by the equality(
A0u,v

)
H0

=
(
u,v
)
V0

∀ u,v ∈ H0; (21.6)

obviously, it is self-adjoint, positive, and continuous, but noncompact. From
Theorem 2 and (21.4) it follows that the spectrum of A0 is situated in
[c0,+∞).

We assume that Θ(m)
k ≤ c0 for each m = 1, 2 and k = 1, . . . ,Km, where

Θ
(m)
k = km p

(m)
k

|B(m)
k

|
. The other cases can be considered similarly as in [Me06].

Solving the differential equations of problem (21.5) in Dm and taking the
first transmission condition vm,k0 |x3=0 = v+0 |x3=0 and the boundary condition(
∂x3v

m,k
0

)
|x3=−dm

= 0 into account, we obtain

vm,k0 (x) =
v+0 (x′, 0)

cos
(
dm

√
μ0 −Θ(m)

k

) cos
(√

μ0 −Θ(m)
k (x3 + dm)

)
.

Substituting these representations into the second transmission condition, we
get the nonlinear spectral problem L(μ)v+0 = 0 in H1

$ (Ω0) = {v ∈ H1(Ω0) :
v is a-periodic on Γ0} (μ ∈ [c0,+∞)) for the operator function

L(μ) := (μ+ 1)A1 +
2∑

m=1

Km∑
k=1

|B(m)
k |
√
μ−Θ(m)

k tan
(
dm

√
μ−Θ(m)

k

)
A2 − I,

where A1, A2 are self-adjoint, compact operators in H1
$ (Ω0) such that, for

∀ ϕ,ψ ∈ H1
$ (Ω0),

(A1ϕ,ψ)H1
�
(Ω0) =

∫
Ω0

ϕ(x)ψ(x)dx, (A2ϕ,ψ)H1
�
(Ω0) =

∫
Q

ϕ(x′, 0)ψ(x′, 0)dx′.

Theorems on existence and concentration of the spectrum for such self-
adjoint operator-functions and minimax principles for the eigenvalues were
proved in [Me94], [HrMe96]. From these results we have the following theorem.
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Theorem 3. The spectrum of L consists of normal eigenvalues and the left
accumulation points {Pt : t ∈ N} that are poles of the functions

tan
(
dm

√
μ−Θ(m)

k

)
, m = 1, 2, k = 1, . . . ,Km. (21.7)

These points divide the eigenvalues into the sequences

c0 ≤ μ(1)
1 ≤ · · · ≤ μ(1)

n ≤ · · · → P1,

Pt−1 < μ
(t)
1 ≤ · · · ≤ μ(t)

n ≤ · · · → Pt as n → ∞.

21.4 Asymptotic Approximations

Let v0 ∈ H0 and μ be a solution to problem (21.5). Using the method of
matched asymptotic expansions, we construct an approximation Rε ∈ Hε:

Rε(x) = v+0 (x) + εχ0(x3)
3∑
i=1

(Zi(ξ)− δi,3ξ3) |ξ= x
ε
∂xiv

+
0 (x′, 0), x ∈ Ω0,

Rε = vm,k0 + ε
2∑
i=1

Yi(ξi)|ξi=
xi
ε
∂xi
vm,k0

+ ε χ0

3∑
i=1

(
Zi(ξ)− Yi(ξi)

)
|ξ= x

ε
∂xi
v+(x′, 0)

on G(m)
ε (k), m = 1, 2, k = 1, . . . ,Km. Here χ0 is a smooth cut-off function

that equals 1 in a neighborhood of zero; {Zi} are 1-periodic in ξ1 and ξ2
(ξ3 > 0) junction-layer solutions to the following problems:⎧⎨⎩

−ΔξZi(ξ) = 0, ξ ∈ Π,
∂ξ3Zi(ξ

′, 0) = 0, (ξ′, 0) ∈ ∂Π+ \B,
∂νξ′Zi = −δ1,iν1(ξ′)− δ2,iν2(ξ′), ξ ∈ ∂Π− \B,

(21.8)

where δi,k is the Kronecker symbol, Π = Π+∪Π−, Π+ = �×(0,+∞), Π− =(
∪K1
k=1Π

1,−
k

)
∪
(
∪K2
k=1Π

2,−
k

)
, Πm,−

k = B
(m)
k × (−∞, 0]. We reassign the semi-

infinite cylinders {Πm,−
k }m=1,2, k=1,...,Km

and sets {B(m)
k }m=1,2, k=1,...,Km

by
{Π−

j }j=1,...,K and {Bj}j=1,...,K , respectively, K = K1 +K2.

Lemma 1. There exist K solutions to the junction-layer problem (21.8) at
i = 3, which have the following differentiable asymptotics:

Ξj(ξ) =

⎧⎪⎨⎪⎩
ξ3 +O(exp(−γ+

3 ξ3)), ξ3 → +∞, ξ ∈ Π+,
ξ3

|Bj | + αj +O(exp(γ−
j ξ3)), ξ3 → −∞, ξ ∈ Π−

j ,

α
(k)
j +O(exp(γ−

k ξ3)), ξ3 → −∞, ξ ∈ Π−
k , k �= j,
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where γ±
j are some positive constants. Any other solution to problem (21.8)

(i = 3), which has polynomial growth at infinity, can be presented as a linear
combination β0 +

∑K
j=1 βjΞj.

There exists a unique solution Zi to problem (21.8) (i = 1, 2) with the
following asymptotics:

Zi(ξ) =

{
O(exp(−γ+

i ξ3)), ξ3 → +∞, ξ ∈ Π+,

−ξi + b(i)j +O(exp(−γ−
i,j ξ3)), ξ3 → −∞, ξ ∈ Π−

j .

We take Z3 as a linear combination (1−β2−· · ·−βK)Ξ1(ξ)+β2Ξ2(ξ)+· · ·+
βKΞK(ξ); β2, . . . , βK are found from the matching conditions. The functions
Y1, Y2, Y3 are 1-periodic with respect to ξ1, ξ2; Yi(ξi) = −ξi + b

(i)
j , ξ ∈ Π−

j ,
j = 1, . . . ,K, i = 1, 2; Y3 is equal to the polynomial part of (1 − β2 − · · · −
βK)Ξ1(ξ) + β2Ξ2(ξ) + · · ·+ βKΞK(ξ) on the cell of periodicity Π−.

Substituting Rε and μ0 into problem (21.1) and finding residuals, we get

‖Rε − μ0AεRε ‖Hε
≤ c(δ) ε1−δ (δ > 0). (21.9)

21.4.1 Approximation near the Essential Spectrum.

Let μ0 ∈ σess(A0) = {Pt : t ∈ N}, i.e., μ0 coincides with one of the poles of
the functions (21.7) at m0 ∈ {1, 2} and k0 ∈ {1, . . . ,Km0}. Fix one cylinder
G

(m0,k0)
i0j0

(ε) =
{
x : (x1

ε − i0, x2
ε − j0) ∈ B

(m0)
k0

, x3 ∈ (−dm0 , 0]
}

from the set

G
(m0)
ε (k0) and construct the following approximation:

Wε(x) =

⎧⎨⎩ α(ε) cos
(√

μ0 −Θ(m0)
k0

(x3 + dm0)
)
, x ∈ G(m0,k0)

i0j0
(ε),

0, x ∈ Ωε \G(m0,k0)
i0j0

(ε).
(21.10)

Here we choose α(ε) such that ‖Wε‖Hε
= 1. Substituting {Wε(·), μ0} into

problem (21.1) in place of {u(ε, ·), λ(ε)} and finding residuals, we get

‖Wε − μ0Aε
(
Wε

)
‖Hε ≤ c ε

1
4 . (21.11)

21.5 Justification of the Asymptotics

To justify the asymptotic approximations constructed above, we use the
scheme proposed in [Me(4)01] for investigation of the asymptotic behavior
(ε → 0) of eigenvalues and eigenvectors of a family of operators {Aε : Hε �→
Hε}ε>0 losing compactness in the limit passage. This scheme generalizes the
procedure of the justification of the asymptotic behavior of eigenvalues and
eigenvectors of boundary-value problems in perturbed domains.

In our case this is the family of operators {Aε : Hε �→ Hε}ε>0 defined
in (21.3). Recall that Aε corresponds to problem (21.1) and A0 : H0 �→ H0,
which is defined by (21.6), corresponds to the homogenized problem (21.5).
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Define special coupling operators Pε and Sε. For better understanding, we
write the diagram

Hε ⊂⊂ Vε
Pε

⏐⏐E F⏐⏐Sε

Z0⊂ H0 ⊂V0

in which the imbedding H ⊂ V means that the space H is densely and only
continuously embedded into V, but the imbedding H ⊂⊂ V is also compact.
Here Z0 = {u ∈ H0 : u(m)

k ∈ H1(Dm), m = 1, 2, k = 1, . . . ,Km}. Obviously,
Z0 ⊂⊂ V0.

The operator Sε : V0 �→ Vε assigns to any multi-sheeted function v ∈ V0

the function Sεv that is equal to v0 in Ω0 and to v(m)
k |

G
(m)
ε (k), m = 1, 2, k =

1, . . . ,Km. Clearly, Sε is uniformly bounded with respect to ε. Thus, the
condition (C1) in the scheme [Me(4)01] is satisfied.

The operator Pε from condition (C2) is associated with the extension
operators from Theorem 1, and in our case it puts every function u from Hε
into the respective multi-sheeted function from Z0.

Conditions (C3) and (C4) are verified in the proof of Theorem 2. Condi-
tions (C5) and (C6), in fact, have been verified in the previous section. The
result of the action of the operator Rε from condition (C5) is the construc-
tion of the approximation function Rε which satisfies the estimate (21.9). The
estimate (21.11) coincides with a similar estimate from condition (C6).

Thus, all conditions (C1)–(C6) of the scheme from [Me(4)01] are satisfied
for problems (21.1) and (21.5). Applying this scheme, we get the following
theorems.

Theorem 4 (Hausdorff convergence). Only points of the spectrum of
problem (21.5) are accumulation points for the spectrum of problem (21.1)
as ε→ 0.

The eigenvalues {λn(ε)} at fixed indices n are usually called low eigenval-
ues (see [Me(3)01]); the corresponding eigenfunctions are called low frequency
oscillations.

Definition 1 ([Me(3)01]). The value T := supn∈N lim supε→0 λn(ε) is
called the threshold of the low eigenvalues of problem (21.1).

Theorem 5 (low frequency convergence). Let {λn(ε) : n ∈ N0} be the
ordered sequence (21.4) of eigenvalues of problem (21.1), let {un(ε, ·) : n ∈ N}
be the corresponding sequence of eigenfunctions orthonormalized in L2(Ωε),
and let c0 < μ

(1)
1 ≤ · · · ≤ μ(1)

n ≤ · · · → P1 be the first series of eigenvalues of
the homogenized problem (21.5) (see Theorem 3).

Then the threshold of the low eigenvalues of problem (21.1) is equal to P1,
and for any n ∈ N λn(ε) → μ

(1)
n as ε → 0. There exists a subsequence of

the sequence {ε} (again denoted by {ε}) such that Pεun(ε, ·) → v(0)
n weakly
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in Z0 as ε → 0, where {v(0)
n } are the corresponding eigenfunctions of the

homogenized problem (21.5) that satisfy the condition
(
v(0)
n ,v(0)

m

)
V0

= δn,m.

Theorem 6 (asymptotic estimates for the low eigenvalues). Let
μ

(1)
n = μ

(1)
n+1 = · · · = μ

(1)
n+r−1 be an r-multiple eigenvalue of problem (21.5)

from the first series and let v(1)
n , . . . ,v(1)

n+r−1 be the corresponding eigenfunc-
tions orthonormalized in V0.

Then for any δ > 0 and n ∈ N and sufficiently small ε, we have

|λn(ε)− μ(1)
n | ≤ c0(n, δ) ε1−δ.

In addition, for any δ > 0 and i ∈ {0, 1, . . . , r−1}, there exist ε0 > 0, Ci > 0,
and {αik(ε), k = 0, 1, . . . , r − 1} ⊂ R such that 0 < c1 <

∑r−1
k=0(αik(ε))

2 < c2
and for any ε ∈ (0, ε0)∥∥∥R(n+i)

ε −
∑r−1

k=0
αik(ε)un+k(ε, ·)

∥∥∥
H1(Ωε)

≤ Ci(n, δ) ε1−δ,

where {R(n+i)
ε } is the approximation function constructed over the function

v(1)
n+i (see Section 21.4).

It follows from Theorems 4 and 5 that there exist other converging se-
quences of eigenvalues λn(ε)(ε) (n(ε) → +∞ as ε → 0) that are called
high frequency convergences; the corresponding eigenfunctions are called high
frequency oscillations.

Theorem 7 (high frequency convergence and estimates). Let μ(t)
n =

μ
(t)
n+1 = · · · = μ

(t)
n+r−1 be an r-multiple eigenvalue of problem (21.5) from the

tth series; the functions v(t)
n , . . . ,v

(t)
n+r−1 are the corresponding eigenfunctions

orthonormalized in V0.
Then, for any δ > 0, there exist εn,t > 0 and c > 0 such that for all values

of the parameter ε ∈ (0, εn,t), the interval

In,t(ε) =
(
μ(t)
n − cε1−δ , μ(t)

n + cε1−δ
)

contains exactly r eigenvalues of problem (21.5).
For the approximation function R(n+i,t)

ε (i = 0, 1, . . . , r − 1) constructed
over v(t)

n+i, the following asymptotic estimate:

∥∥∥ R
(n+i,t)
ε

‖R(n+i,t)
ε ‖Hε

− Ũi(ε, ·)
∥∥∥

Hε

≤ c(n, t, δ) ε1−δ, ‖Ũi(ε, ·)‖Hε
= 1,

holds, where Ũi(ε, ·) is a linear combination of eigenfunctions of problem (21.1)
that correspond to the eigenvalues from the interval In,t(ε).
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Theorem 8 (asymptotic behavior near the essential spectrum). Let
μ0 coincide with one of the points of the essential spectrum {Pt : t ∈ N} of
the homogenized problem (21.5).

Then there exist c0 > 0 and ε0 > 0 such that for all values of the parameter
ε ∈ (0, ε0) the interval (

1
μ0

− c0 ε
1
4 , 1

μ0
+ c0 ε

1
4

)
contains finitely many eigenvalues of the operator Aε.

There exists a finite linear combination Ũε (‖Ũε‖ε = 1) of the eigenfunc-
tions uεk(ε)+i, i = 0, p(ε), that correspond, respectively, to the eigenvalues(
λk(ε)+i(ε)

)−1 of operator Aε from the segment
[

1
μ0

− c0 ε
1
8 , 1

μ0
+ c0 ε

1
8

]
,

such that ∥∥∥Wε − Ũε
∥∥∥

Hε

≤ 2ε
1
8 ,

where Wε is defined by (21.10).

From the estimates in Theorems 6 and 7 it follows that the low and high
frequency vibrations are vibrations of the junction Ωε like an entire system.
Vibrations like Wε (see (21.10)) are vibrations of Ωε, in which each cylinder
can have its own frequency. Therefore, such vibrations are called pseudovibra-
tions (for more details see [Me(3)01]). They appear near the essential spec-
trum of the homogenized problem, and their energy is concentrated on the
thin cylinders.
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22.1 Introduction

The main purpose of this chapter is to give general ideas on a kind of singular
perturbation arising in thin shell theory when the middle surface is elliptic
and the shell is fixed on a part of the boundary and free on the rest, as well as
an integral heuristic procedure reducing these problems to simpler ones. The
system depends essentially on the parameter ε equal to the relative thickness
of the shell. It appears that the “limit problem” for ε = 0 is highly ill posed.
Indeed, the boundary conditions on the free boundary are not “adapted” to
the system of equations; they do not satisfy the Shapiro–Lopatinskii (SL)
condition. Roughly speaking, this amounts to some kind of “transparency”
of the boundary conditions, which allows some kind of locally indeterminate
oscillations along the boundary, exponentially decreasing inside the domain.
This pathological behavior only occurs for ε = 0. In fact, for ε > 0 the
problem is “classical.” When ε is positive but small, the “determinacy” of

boundaries, as well as the small terms coming from ε > 0.
In these kinds of situations, the limit problem has no solution within the

classical theory of partial differential equations, which uses distribution theory.
It is sometimes possible to prove the convergence of the solutions uε towards
some limit u0, but this “limit solution” and the topology of the convergence
are concerned with abstract spaces not included in the distribution space.

After recalling the SL condition (Section 22.2), we give in Section 22.3 a
very simple example of such a perturbation problem. The geometry of the
domain (an infinite strip) allows explicit treatment by Fourier transform in
the longitudinal direction. The inverse Fourier transform within distribution
theory is only possible for ε > 0, whereas for ε = 0 it is only possible in the
framework of analytic functionals (highly singular and not enjoyi localization
properties). This example shows the prominent role of components with high
frequency; for small ε, the “smooth parts” (i.e., with small |ξ|) of the solutions
may be neglected with respect to “singular ones” (i.e., with large |ξ|). We also
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recall an example of the elliptic Cauchy problem (in fact, Hadamard’s counter-
example) which exhibits some relation to the limit problem.

In Section 22.4, we report the heuristic procedure of [EgMeSa07]. In this
latter article, we addressed a more complicated problem including a variational
structure, somewhat analogous to the shell problem, but simpler, concerning
an equation instead of a system. It is shown that the limit problem contains
in particular an elliptic Cauchy problem. This problem was handled in both
a rigorous (very abstract) framework and using a heuristic procedure for ex-
hibiting the structure of the solutions with very small ε. The reasons why the
solution leaves the distribution space as ε goes to 0 are then evident. In Sec-
tion 22.4 we present a simplified version of the heuristic procedure involving
only the essential facts of the approximation, which are very much analogous
to the method of construction of a parametrix in elliptic problems [Ta81],
[EgSc97]:
• Only principal (with higher differentiation order) terms are taken into

account.
• Locally, the coefficients are considered to be constant, their values being

frozen at the corresponding points.
• After the Fourier transformation (x → ξ), terms with small ξ are ne-

glected in comparison with those with larger ξ (which amounts to taking into
account singular parts of the solutions while neglecting smoother ones). We
note that this approximation, along with the two previous ones, leads to some
kind of “local Fourier transformation,” which we shall use freely in the sequel.

Another important ingredient of the heuristics is a previous drastic restric-
tion of the space where the variational problem is handled. In order to search
for the minimum of energy, we only take into account functions such that the
energy of the limit problem is very small. This is done using a boundary layer
method within the previous approximations, i.e., for large |ξ|. This leads to
an approximate simpler formulation of the problem for small ε, where it is
apparent that the limit problem involves a smoothing operator and cannot
have a solution within distribution theory.

It should prove useful to give an example of a sequence of functions con-
verging to an analytical functional (but leaving the distribution space, then
leading to a “complexification” phenomenon). It is known ([Sc50], [GeCh64])
that (direct and inverse) Fourier transformation within distribution theory is
only possible for temperate distributions, not allowing functions with expo-
nential growth at infinity. The space of (direct or inverse) Fourier transforms
of general distributions is denoted by Z ′. It is a space of analytical functionals:
the corresponding test functions are analytical, rapidly decreasing functions,
forming the space Z.

Let us consider the (nontemperate) distribution (or function) û(ξ) =
cosh(ξ). The sequence

ûλ(ξ) =
{

cosh(ξ) if |ξ| < λ,
0 otherwise
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converges to û in the distribution sense as λ goes to infinity. The inverse
Fourier transforms uλ(x) converge in Z ′ to the analytical functional u(x).
The functions ûλ(ξ) are tempered and their inverse Fourier transforms are
easily computed by hand. It appears that for large λ

uλ(x) ≈ eλ

2π
1

1 + x2 (cos(λx) + x sin(λx)).

It is then apparent that uλ(x) consists of an “almost periodic” function with
period tending to zero along with 1/λ, multiplied by an “envelope” defined by

1
1+x2 and by the factor eλ

2π . Moreover, note that the amplitude is exponentially
large with respect to the inverse of the period. It is then apparent that the
limit is an “extremely singular” function as the “graph” fills the entire plane.
Moreover, it is clear (and may be rigorously proved [EgMeSa07]) that the
sequence uλ leaves the distribution space everywhere, not only in the vicinity
of x = 0 as is suggested by the formal inverse Fourier transform of cosh(ξ) =
Σ+∞
n=0

ξ2n

(2n)! , which is

u(x) = Σ+∞
n=0

−i
(2n)!

δ2n(x),

apparently a singularity “of order infinity” at the origin. This fact constitutes
an example of the property that elements of Z ′ can only be tested with analytic
functions (with support on the entire x-axis) so that elements of Z ′ do not
enjoying localization properties.

The motivation for studying this kind of problem comes from shell theory,
see [SaHuSa97], [BeMiSa08]. It appears that when the middle surface is elliptic
(both principal curvatures have the same sign) and is fixed by a part Γ0 of the
boundary and free by the rest Γ1, the “limit problem” as the thickness ε tends
to zero is elliptic, with boundary conditions satisfying SL on Γ0, and boundary
conditions not satisfying SL on Γ1. Without going into details, which may
be found in [MeSa06], [MeEtAl07], [EgMeSa07], and [EgMeSa09], we show
numerical computations taken from [BeMiSa08] of the normal displacement
for ε = 10−3 and ε = 10−5 (Figure 22.1 left and right, respectively) when the
shell is acted upon by a normal density of forces on a rectangular region of
the plane of parameters. The most important feature is constituted by large
oscillations near the free boundary Γ1. It is apparent that, when passing from
ε = 10−3 to ε = 10−5, the amplitude of the oscillations grows from 0.001 to
0.01. The singularities produced by the jump of the applied forces inside the
domain are still apparent for ε = 10−3, but not for ε = 10−5, where only
oscillations along the boundary are visible. Moreover, the number of such
oscillations goes from nearly 3 for ε = 10−3 to nearly 5 for ε = 10−5 and is
then nearly proportional to log(1/ε). We shall see that all these features agree
with our theory.
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Fig. 22.1. Normal displacement for ε = 10−3 (left) and for ε = 10−5 (right).

22.2 The Shapiro–Lopatinskii Condition for Boundary
Conditions of Elliptic Equations

In this section, we recall some properties of elliptic Partial Differential equa-
tion (PDEs) (see [AgDoNi59] and [EgSc97] for more details).

We consider a PDE of the form

P (x, ∂α)u = f(x),

where x = (x1, x2) and ∂α = ∂/∂xα, α = 1, 2, and P is a polynomial of degree
2m in ∂α. Let P0 be the “principal part,” i.e., the terms of higher order. The
equation is said to be elliptic at x if the homogeneous polynomial of degree
2m in ξα:

P0(x,−iξα) = 0 (22.1)

has no solution ξ = (ξ1, ξ2) �= (0, 0) with real ξα. When the coefficients are
real (this is the only case that we shall consider), this implies that the degree
is even (this is the reason why we denoted it by 2m). The left-hand side
of (22.1) is said to be the “principal symbol;” the “symbol” is obtained in an
analogous way taking the whole P instead of the principal part P0. We note
that replacing ∂/∂xα by −iξα in P0 amounts to formally taking the Fourier
transform x → ξ for the homogeneous equation with constant coefficients
obtained by discarding the lower order terms and freezing the coefficients at
x. Obviously, ellipticity on a domain Ω is defined as ellipticity at any x ∈ Ω.

It is worthwhile mentioning that ellipticity amounts to non-existence of
“traveling waves” of the form

e−iξx (22.2)

for the equation obtained after discarding lower order terms and freezing
coefficients. Here “traveling” amounts to “with real ξ”; note that solutions
like (22.2) with non-real ξ are necessarily exponentially growing or decaying
(in modulus) in some direction. Moreover, when a solution of the form (22.2)
exists (with ξ either real or not), it also exists for cξ with any c. In a heuris-
tic framework, we may suppose that |ξ| is very large; this justifies discarding
lower order terms (= of lower degree in |ξ|). In the same (heuristic) order
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of ideas, freezing the coefficients allows us to consider “local solutions.” This
amounts to multiplying the solutions by a “cutoff” function θ(x) or, equiva-
lently, taking the convolution of the Fourier transform with ϑ̂(ξ), which does
not modify the behavior for large ξ. Microlocal analysis gives a rigorous sense
to that heuristics. It then appears that local singularities of a solution u (as-
sociated with behavior of the Fourier transform for large |ξ|) cannot occur in
elliptic equations unless they are controlled by the (Fourier transform of the)
right-hand side f . This gives a “heuristic proof” of the classical property that
local solutions of elliptic equations are rigorously associated with singularities
of f .

What happens with solutions near the boundary? A local Fourier trans-
form is no longer possible, but, after rectification of the boundary in the
neighborhood of a point, we may perform a tangential Fourier transform. If,
for instance, the considered part of the boundary is on the axis x1 and the
domain is on the side x2 > 0, taking only higher order terms and frozen
coefficients, we have solutions of the form (22.2) with real ξ1 (coming from
the Fourier transform) and non-real ξ2. The dependence in x2 is immediately
obtained by solving an ordinary differential equation (ODE) with constant
coefficients. Obviously, the solutions are exponentially growing or decreasing,
for x2 > 0. As the coefficients are real, there are precisely m (linearly inde-
pendent) growing and m decreasing solutions (in the case of multiple roots,
dependence in x2 of the form x2e

λ2 and analogous forms also occur). Roughly
speaking, there are solutions of the form∑

k

Cke
−iξ1x1eλkx2

with real ξ1 and Re(λ) �= 0 (here k is running from 1 to 2m). Boundary con-
ditions on x2 = 0 should control solutions with Re(λ) < 0, i.e., exponentially
decreasing inside the domain, whereas exponentially growing ones should be
controlled “by the equation in the rest of the domain and the boundary con-
ditions on the other parts of the boundary.” In other words, “good bound-
ary conditions” should determine (within our approximation of the half-plane
and frozen coefficients) the solutions of the equation of the form (22.1) with
Re(λ) < 0. Obviously, the number of such boundary conditions is m. A set
of m boundary conditions enjoying the above property is said to satisfy the
Shapiro–Lopatinskii condition. There are several equivalent specific definitions
of it. We shall mainly use the following one.

Definition 1. Let P be elliptic at a point O of the boundary. A set of m
boundary conditions Bj(x, ∂α) = gj(x), j = 1, ...,m is said to satisfy the SL
condition at O when, after a local change to new coordinates with origin at
O and axis x1 tangent to the boundary, taking only the higher order terms
and coefficients frozen at O in the equation and the boundary conditions, the
solutions of the form (22.1) with Re(λ) < 0 obtained by formal tangential
Fourier transform are well defined by the boundary conditions.
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Remark 1. The preceding definition should be understood in the sense of for-
mal solution for any given (real and nonzero) ξ1. The SL condition is not con-
cerned with solutions in certain spaces. It is purely algebraic, and concerns m
conditions imposed to the m (decreasing with x2) linearly independent solu-
tions of the ODE obtained from P0 by a formal tangential Fourier transform.
This also amounts to saying that imposing the boundary conditions equal to
zero, the considered solutions must vanish. In fact, the SL condition amounts
to nonvanishing of a certain determinant, and as such it is generically satis-
fied: conditions that do not satisfy it are rarely encountered. In particular, in
“well-behaved problems,” when coerciveness on appropriate spaces is proved,
the SL condition is not usually checked. Also note that the SL condition is
independent of a change of variables, and, in most cases, the change is trivial.
On the other hand, there are also definitions of the SL condition without a
change of variables. Last, also note that the SL condition has nothing to do
with lower order terms and the right-hand side of the boundary conditions
(as ellipticity is only concerned with the principal symbol); it is merely a con-
dition of adequation of the principal part of the boundary operators to the
principal part of the equation.

Let us consider, as an exercise, examples for the Laplacian:

P = −∂2
1 − ∂2

2 . (22.3)

The principal symbol is ξ21 + ξ22 , so the equation is elliptic of order 2; thus
m = 1. “Good boundary conditions” are in number of 1.

Let us try the boundary condition (Dirichlet)

u = 0. (22.4)

Taking any point of the boundary and (x1, x2) with origin at that point,
tangent and normal to the boundary, respectively, the equation is the same as
that for the initial variables, and a formal tangential Fourier transform gives

(ξ21 − ∂2
2)û(ξ1, x2) = 0,

and the solutions are

û(ξ1, x2) = C1(ξ1)e|ξ1|x2 + C2(ξ1)e|ξ1|x2 .

Taking only the exponentially decreasing solutions for x2 > 0 we only have

û(ξ1, x2) = C1(ξ1)e−|ξ1|x2 . (22.5)

Now, applying the “tangential Fourier transformation” to (22.4), we find that

û(ξ1, 0) = 0, (22.6)

that is, the transform vanishes identically. Then the Dirichlet boundary con-
dition satisfies the SL condition for the Laplacian.
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The case of the Neumann boundary condition for the Laplacian

∂u

∂n
= 0

is analogous. (Note also that the Fourier condition (∂u∂n )+au = g is the same,
as only the higher order terms are taken in consideration.) Proceeding as
before, we have, instead of (22.6):

∂2û(ξ1, 0) = −|ξ1|C1(ξ1) = 0,

which also gives C1(ξ1) = 0 and then û = 0. Thus, (22.6) satisfies SL for (22.3).
In contrast, the boundary condition

(∂s − i∂n)u = 0, (22.7)

where s and n denote the arc of the boundary and the normal, does not satisfy
the SL condition for the Laplacian. Indeed, taking the new local axes, s and
n become x1 and x2, and after a tangential Fourier transform

(−iξ1 − i∂2)û(ξ1, 0) = 0,

which applied to (22.5) becomes

(−iξ1 + i|ξ1|)C1(ξ1) = 0,

we then see that C1(ξ1) vanishes for negative ξ1, but is arbitrary for positive
ξ1. In fact, the boundary condition (22.7) is “transparent” for solutions of the
form (22.5) with positive ξ1.

Remark 2. As is apparent in the last example, when the SL condition is not
satisfied, there is some kind of “local nonuniqueness,” where “local” recalls
that only higher order terms are taken in consideration, and the coefficients
are frozen at the considered point of the boundary.

The SL condition appears as some previous condition for solving elliptic
problems. It is apparent that some pathology is involved at points of the
boundary where it is not satisfied.

Let us mention, before closing this section, that the boundary conditions
may be different on different parts of the boundary, especially on different
connected components of it (when there are points of junction of the various
regions, usually singularities appear at those points).

22.3 An Explicit Perturbation Problem Where the SL
Condition Is Not Satisfied on a Part of the Boundary of
the Limit Problem

Let Ω be the strip (−∞,+∞) × (0, 1) of the (x, y) plan. We denote by Γ0
and Γ1 the boundaries y = 0 and y = 1, respectively. We then consider the
boundary value problem depending on the parameter ε:
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%uε = 0 on Ω
uε = 0 on Γ0
∂xu+ (i+ ε2)∂yu = ϕ on Γ1

,

where ϕ is the data of the problem. It is a given function of x, that we shall
suppose sufficiently smooth, tending to 0 at infinity. We shall solve it by an
x → ξ Fourier transform; it is easily seen that we also automatically have
u→ 0 for x→∞, which may be added to the boundary conditions.

The boundary condition on Γ0 is the Dirichlet one, which satisfies SL for
the Laplacian. In contrast, the boundary condition on Γ1 satisfies it for ε > 0
(this is easily checked), not at the limit ε = 0 (see the end of the previous
section). The problem is to solve for ε > 0 and to study the behavior for ε
going to zero.

Denoting byˆthe x → ξ Fourier transform, ûε is defined on the same Ω
domain, but of the (ξ, y) plane. The solutions of the (transform of) equation
and the boundary condition on Γ0 are of the form

ûε(ξ, y) = α(ξ) sinh(ξy),

where α denotes an unknown function to be determined with the boundary
condition on Γ1. It will prove useful to write the solution under the form

ûε(ξ, y) = β̂ε(ξ)
sinh(ξy)
sinh(ξ)

(22.8)

for the new unknown β̂ε(ξ), which is the transform of the trace uε(x, 0).
Imposing the Fourier transform of the boundary condition on Γ1, we have

−iξβ̂ε(ξ) + (i+ ε2)
cosh(ξ)
sinh(ξ)

β̂ε(ξ)ξ = ϕ̂(ξ),

so that

β̂ε(ξ) =
ϕ̂(ξ)

−iξ
(
1− coth(ξ)

)
+ ε2ξ coth(ξ)

. (22.9)

In order to study this function, we should keep in mind that the expression
(1− coth(ξ)) decays for ξ → +∞ as 2e−2ξ. Then, at the limit ε = 0 we have

β̂0(ξ) =
ϕ̂(ξ)

−iξ(1− coth(ξ))
. (22.10)

For ξ → +∞ this function behaves as

β̂0(ξ) ≈ 2
ϕ̂(ξ)
−iξ e

2ξ.

This shows (except for very special data ϕ with a very fast decaying Fourier
transform) that β̂0(ξ) is not a tempered distribution, and the inverse Fourier
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transform is an analytical function in Z ′. Nevertheless, for ε > 0, β̂ε(ξ) is
“well behaved” for ξ → +∞ as

β̂ε(ξ) ≈ ϕ̂(ξ)
ξε2

. (22.11)

This specific behavior depends on that of ϕ̂
ξ , so that in most cases it will be

decreasing, but multiplied by the factor ε−2. When ε > 0 (small but not 0) is
fixed, β̂ε(ξ) is approximately given by (22.10) for “finite” ξ and by (22.11) for
ξ going to +∞. It is easily seen that the sup in modulus of |β̂ε(ξ)| is located
in the region where both terms in the denominator of the right-hand side
of (22.9) are of the same order (so that neither of them may be neglected).
This gives

ξ = O(log(1/ε)). (22.12)

It appears that β̂ε(ξ) consists mainly of Fourier components which tend
to infinity algebraically as ε goes to zero with ξ tending to infinity “slowly”
as in (22.12). This is somewhat analogous to the example, given in the Intro-
duction, of a sequence of functions converging to an analytical functional.

Coming back to (22.8), the main properties of the behavior of uε(x, 1) may
be shown:
• The trace uε(x, 1) = βε(x) on the boundary Γ1 which bears the “patho-

logical boundary condition” mainly consists of large oscillations with wave
length 1/ log(1/ε) (which tends to 0 very slowly as ε → 0). The amplitude
of those oscillations grows nearly as ε−2. The limit ε → 0 does not exist in
distribution theory; it constitutes a complexification process.
• Out of the trace on Γ1 (i.e., for 0 < y < 1), the behavior is analogous,

but of lower amplitude, which is exponentially decreasing going away from
Γ1. We recover properties of the nonuniqueness associated with the failed SL
condition.

Before concluding this section, we would like to show some analogy be-
tween the previous limit problem and the Cauchy elliptic problem, which is a
classical example of an ill posed problem, without a solution in general.

We consider the same domain Ω as before, but we now impose two bound-
ary conditions on Γ0 and no condition on Γ1. Namely,⎧⎨⎩

%v = 0 on Ω
v = ψ on Γ0
∂yv = 0 on Γ0

.

Taking as above the x→ ξ Fourier transform, it follows immediately that

v̂(ξ, y) = ψ̂(ξ) cosh(ξy).

It is apparent that the behavior for ξ → ∞ is exponentially growing (except
for the case when ψ̂(ξ) decays faster than e−|ξ|) so that it is not tempered
and the inverse Fourier transform does not exist within distribution theory.
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22.4 A Model Variational Sensitive Singular
Perturbation

22.4.1 Formulation of the Problem

Let Ω be a two-dimensional compact manifold with smooth (of C∞ class)
boundary ∂Ω = Γ0 ∪Γ1 of the variable x = (x1, x2), where Γ0 and Γ1 are dis-
joint; they are one-dimensional compact smooth manifolds without boundary,
then diffeomorphic to the unit circle. Let a and b be the bilinear forms given
by

a(u, v) =
∫
Ω

%u%vdx,

b(u, v) =
∫
Ω

2∑
α,β=1

∂αβu ∂αβvdx.

We consider the following variational problem (which has possibly only a
formal sense): {

Find uε ∈ V such that, ∀v ∈ V
a(uε, v) + ε2b(uε, v) = 〈f, v〉, (22.13)

where the space V is the “energy space” with the essential boundary condi-
tions on Γ0

V = {v ∈ H2(Ω); v|Γ0 =
∂v

∂n |Γ0

= 0},

where n, t denotes the normal and tangent unit vectors to the boundary Γ
with the convention that the normal vector n is inward to Ω. It is easily
checked that the bilinear form b is coercive on V . Moreover, we immediately
obtain the following result. For all ε > 0 and for all f in V ′, the variational
problem (22.13) is of Lax–Milgram type and it is a self-adjoint problem which
has a coerciveness constant larger than cε2, with c > 0.

The equation on Ω associated with problem (22.13) is

(1 + ε2)%2uε = f on Ω, (22.14)

as both forms a and b give the Laplacian. As for the boundary conditions on
Γ0, they are “principal,” i.e., they are included in the definition on V (defined
in Section 22.4.1). As for conditions on Γ1, they are “natural,” classically
obtained from the integrated terms by parts. Those coming from the form
b are somewhat complicated; we shall not write them, as the problem with
ε > 0 is classical. For ε = 0 these conditions (coming from form a) are
%u = ∂�u

∂n = 0, on Γ1.
As a matter of fact, the full limit boundary value problem is⎧⎪⎪⎨⎪⎪⎩

%2u0 = f on Ω
u = ∂u0

∂n = 0 on Γ0
%u0 = 0 on Γ1

− ∂
∂n%u0 = 0 on Γ1.

(22.15)
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Let us check that the boundary conditions on Γ1 (i.e., the two last lines
of (22.15)) do not satisfy the SL condition for the elliptic operator%2. Indeed,
proceeding as in Section 22.2, by a formal tangential Fourier transform,

(−ξ21 + ∂2
2)2û = 0,

which yields
v̂ = (Ae−|ξ1|x2 + Cx2e

−|ξ1|x2) (22.16)

(as well as analogous terms with +|ξ| instead of −|ξ|, which are not taken
into account as exponentially growing inwards the domain). Here, according
to SL theory, x2 is the coordinate normal to the boundary, after taking lo-
cally tangent and normal axes (which do not modify the equation %2). The
(tangential Fourier transform of the) boundary conditions on Γ1 are

(−ξ21 + ∂2
2)û = 0

and
∂2(−ξ21 + ∂2

2)û = 0.

It is immediately seen that the previous solutions (22.16) with C = 0 and any
A �= 0 satisfy both conditions (note that its Laplacian vanishes everywhere,
then it vanishes as well as its normal derivative on the boundary). So, the SL
condition is not satisfied on Γ1.

Before going on with our study, we note that the limit problem (22.15)
implies an elliptic Cauchy problem for the auxiliary unknown

v0 = %u0.

Indeed, system (22.15) gives in particular:⎧⎨⎩
%v0 = f on Ω
v0 = 0 on Γ1

−∂v0

∂n = 0 on Γ1,

which is precisely the Cauchy problem for the Laplacian.
As mentioned in Section 22.3, this is a classical ill posed problem, and the

solution does not exist in general. However, uniqueness of the solution holds
true (by the uniqueness theorem of Holmgren and other analogous ones (see,
for example, [CoHi62])).

22.4.2 A Heuristic Integral Approach

The aim of this section is the construction, in a heuristic way, of an approx-
imate description of the solutions uε of the model problem in the previous
section for small values of ε.

From the general theory of singular perturbations of the form (22.13), we
know that our assumption,
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a(v, v)1/2 defines a norm on V, (22.17)

is crucial. Indeed, when it is not satisfied, the problem is said to be “non-
inhibited.” In such a case, it has a kernel which contains non-vanishing terms,
and then it is easy to establish that the asymptotic behavior of the solution
uε of (22.13) is described by a variational problem in this kernel. This fact is
not surprising when we consider the following minimization problem, which
is equivalent to (22.13):{

Minimize in V,
a(uε, uε) + ε2b(uε, uε)− 2〈f, uε〉. (22.18)

Indeed, when ε goes to zero, the natural trend consists in avoiding the a-
energy which occurs with the factor 1 and leaving the b-energy which has a
factor ε2.

Clearly, this is not possible when (22.17) is satisfied, since the kernel re-
duces to the zero function. Nevertheless, in our case, a(v, v) = 0 implies
%v = 0 and, as v ∈ V , the traces of v and ∂v

∂n vanish on Γ0, so that (22.17)
follows from the uniqueness theorem for the Cauchy problem. This unique-
ness is classical, but the solution u is unstable in the sense that there can be
“large u” in the V norm (or in other spaces) for “small f” in the V ′ norm
(or in other spaces). It then appears that the same reasoning shows that for
small values of ε, the solution uε will be precisely among elements with small
a(uε, uε); that is, with small %uε in L2.

22.4.3 The Γ0 Layer

Let us now build such functions uε ∈ V with very small ‖%uε‖L2 . The main
idea is to consider functions in a larger space than the space of functions v of
V such that %v = 0 (which only contains the function v = 0). The functions
of this bigger space will not satisfy the two boundary conditions on Γ0 that are
satisfied by any function of V . Then we shall modify it in a narrow boundary
layer along Γ0 in order to satisfy the two boundary conditions with small value
of a-energy.

More precisely, let us consider the vector space

G0 = {v ∈ C∞(Ω), %v = 0 on Ω, v = 0 on Γ0}.

Remark 3. We observe that every function of G0 satisfies one of the boundary
conditions on Γ0 which are satisfied by any element of V . For simplicity, we
have chosen v = 0 on Γ0, but we could choose the other one ∂v

∂n = 0 on Γ0 as
well. On the other hand, the regularity assumption C∞ is slightly arbitrary.
Since we will consider the completion of G0 with respect to some norm, this
point is irrelevant.

Obviously, as the Dirichlet problem for the Laplacian on Ω is well posed
in C∞, the space G0 is isomorphic with the space of traces on Γ1:
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{w ∈ C∞(Γ1)},

and the isomorphism is obtained by solving the Dirichlet problem:⎧⎨⎩
%w̃ = 0 on Ω,
w̃ = 0 on Γ0,
w̃ = w on Γ1.

(22.19)

In the sequel, we shall consider either the functions w̃ on Ω or their traces
w on Γ1.

In fact, the exact function uε is a solution of (22.14), which we are search-
ing to describe approximately in order to define a space as small as possible
(incorporating the main features of the solution) to solve the minimization
problem. More precisely, according to our previous comments, we are inter-
ested in the “most singular parts” of uε in the sense of the part corresponding
to the high frequency Fourier components. As we shall see in the sequel, it
turns out that these singular parts may be obtained by modification of the
functions w̃ on a boundary layer close to Γ0; this layer is narrower when the
considered Fourier components are of higher frequency; in fact, the layer only
exists because we only consider high frequencies. This allows us to make an
approximation which consists in using locally curvilinear coordinates defined
by the arc of Γ0 and the normal, and handling them as Cartesian coordinates.
Clearly, this approximation is exact only on Γ0, but is more and more precise
as we approach Γ0, i.e., as the considered frequencies grow.

Once the layer is constructed, we compute its a-energy, as well as the
ε2b-energy of the (modified) w̃ function, in order to consider the variational
problem (22.13) in the restricted space.

Let us first exhibit the local structure of the Fourier transform of w̃ close
to Γ0. According to our general considerations on the heuristic procedure,
ŵ may be considered (after multiplying by an appropriate cutoff function)
of “small support” near a point P0 of Γ0. Taking local tangent and normal
Cartesian coordinates y1, y2, we have, within our approximation,( ∂2

∂y21
+
∂2

∂y22

)
w̃ = 0 on R× (0, t), (22.20)

for some t > 0. Taking the tangential Fourier transform, we obtain

F(w̃j)(ξ1, y2) = λe|ξ1|y2 + μe−|ξ1|y2 . (22.21)

It is worthwhile defining the local structure of ŵ in the vicinity of Γ0 using
the “Cauchy” data w̃ and ∂2w̃ on Γ0 (note that the solution of the Cauchy
problem is unique, so that the Cauchy data determine the solution). As ŵ
vanishes on Γ0, the local structure is then determined by ∂2w̃ on Γ0. Taking
the tangential Fourier transform, this gives

F
(
w̃j

)
(ξ1, y2) = F

(∂w̃j
∂y2 |y2=0

) sinh(|ξ1|y2)
|ξ1|

. (22.22)
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We now proceed to the modification of w̃ into w̃a in a narrow boundary
layer of Γ0 in order to satisfy (always within our approximation) the equation
coming from (22.14) for small ε. Using considerations similar to those leading
to (22.20), this amounts to( ∂2

∂y21
+
∂2

∂y22

)(2)
w̃a = 0 on R× (0, t), (22.23)

hence the tangential Fourier transform reads(
− |ξ1|2 +

∂2

∂y22

)(2)
F(w̃a) = 0. (22.24)

Consequently, F(w̃a) should take the form

F(w̃a)(ξ1, y2) = (α+ γy2)e|ξ1|y2 + (β + δy2)e−|ξ1|y2 .

The four unknown constants should be determined by imposing that w̃a

and ∂2w̃
a vanish for y2 = 0 and the “matching condition” of the layer, i.e., out

of the layer, we want w̃aj to match with the given function w̃j . Since |ξ1| >> 1,
then |ξ1|y2 >> 1 means that y2 >> 1

|ξ1| (but we still impose that y2 is small
in order to be in a narrow layer of Γ0); this is perfectly consistent, as we
will only use the functions for large |ξ1|. Hence, the terms with coefficients
β and δ are “boundary layer terms” going to zero out of the layer (i.e., for
|y2| >> O

(
1

|ξ1|

)
); see perhaps [Ec79] or [Il91] for generalities on boundary

layers and matching. This gives

F
(
w̃j

)
(ξ1, y2) = F

(∂w̃j
∂y2 |y2=0

)
(
sinh(|ξ1|y2)

|ξ1|
− y2e−|ξ1|y2).

This amounts to saying that the modification of the function w̃j consists
in adding to it the inverse Fourier transform of

F
(∂w̃j
∂y2 |y2=0

)(
− y2e−|ξ1|y2

)
.

Defining on Γ0 the family (with parameter y2) of pseudo-differential
smoothing operators δσ(ε,D1, y2) with symbol

δσ(ε, ξ1, y2) = −y2e−|ξ1|y2h(ε, ξ, y2), (22.25)

where h is an irrelevant cutoff function avoiding low frequencies that is equal
to 1 for high frequencies (see [EgMeSa07] for details), we see that the modi-
fication of the function w̃:

δw̃ = w̃a − w̃
is precisely the action of δσ(ε,D1, y2) on ∂w̃j

∂y2
(y1, 0):
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δw̃ = δσ(ε,D1, y2)
∂w̃j
∂y2

(y1, 0).

Let us now compute the leading terms of the a-energy of the modified
function w̃a.

Let ṽ and w̃ be two elements in G0 and ṽa, w̃a the corresponding elements
modified in the boundary layer. As the given ṽ and w̃ are harmonic in Ω,
the a-form is only concerned with the modification terms δṽ and δw̃. Then,
within our approximation, we have

a(ṽa, w̃a) =
∫
Γ0

dy1

∫ +∞

0
%(δṽ)%(δw̃)dy2.

To compute this expression, we first write ṽ and w̃ as a sum of terms
with “small support” (by multiplying by a partition of unity): ṽ = Σj ṽj and
w̃ = Σjw̃j . Then, within our approximation, the integral is on the half-plane
R × (0,+∞) of the variables y1, y2. Taking the tangential Fourier transform
and using the Parseval–Plancherel theorem, we have

a(ṽa, w̃a) = Σj,k

∫ +∞

−∞
dξ1
∫ +∞

0

( d2

dy22
− ξ21
)
δσ(ε, ξ, y2)F

(∂ṽj
∂y2 |y2=0

)
×
( d2

dy22
− ξ21
)
δσ(ε, ξ, y2)F

(∂w̃k
∂y2 |y2=0

)
dy2.

Hence, from (22.25) and integrating in y2, this yields

a(ṽa, w̃a) = Σj,k

∫ +∞

−∞
2|ξ1|

∂w̃1,j

∂y2 |y2=0

∂w̃2,k

∂y2 |y2=0
h2(ε, ξ, y2)dξ1. (22.26)

Expression (22.26) only depends on the traces ∂ṽj

∂y2 |y2=0
(y1) and

∂w̃k

∂y2 |y2=0
(y1), which are functions defined on Γ0.

We now simplify this last expression using a sesquilinear form involving
pseudo-differential operators.

Indeed, denoting by P ( ∂
∂y1

) the pseudo-differential operator with symbol

P (ξ1) = (2|ξ1|)1/2h(ε, ξ, y2),
and summing over j and k, we obtain

a(ṽa, w̃a) =
∫
Γ0

P (
∂

∂s
)
∂ṽ

∂n |Γ0

P (
∂

∂s
)
∂w̃

∂n |Γ0

ds. (22.27)

22.4.4 Influence of the Perturbation Term ε2b

We now consider the minimization problem (22.18) on G0 instead of on V .
Obviously, the a-energy should be computed using formula (22.27). This mod-
ified problem should involve the a-energy and the ε2b-energy. A natural space
for handling it should be the completion G of G0 with the norm
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‖v‖2G =
∫
Γ0

∣∣∣P (
∂

∂s
)
∂v

∂n |Γ0

∣∣∣2ds+ b(v, v).

It is easily seen that G is the space of the harmonic functions of H2(Ω)
vanishing on Γ0; according to (22.19) it may be identified with the space of
traces H3/2(Γ1).

It will prove useful to write another (asymptotically equivalent for large
|ξ1|) definition of this problem. Indeed, the elements w̃ of G0 (and then of
G) may be identified (by solving the problem (22.19)) with their traces w
on Γ1. Moreover, as the functions w̃ are harmonic, we may exhibit their local
behavior in the vicinity of any point x0 ∈ Γ1. Proceeding as in (22.20), (22.21),
and taking only the decreasing exponential towards the domain (this is the
classical approximation for the construction of a parametrix), we have

F(w̃)(ξ1, y2) = F(w)(ξ1)e−|ξ1|y2 , (22.28)

where y1, y2 are the tangent and the normal (inward to the domain) vectors.
Then, it is apparent that the b-energy is concentrated in a layer close to Γ1
and we may compute it in an analogous way to the calculus that was done
for the a-energy (22.27). Indeed, using the Parseval–Plancherel theorem and
within our approximation, we have

b(w̃, w̃) =
∫ +∞

−∞
dy1
∫ +∞

0

∑
α,β

|∂αβw̃|2dy2

=
∫ +∞

−∞
dξ1
∫ +∞

0

(
ξ41 |F(w̃)|2 + 2ξ21 |F(

∂w̃

∂y2
)|2 + |F(

∂2w̃

∂y22
)|2
)
dy2.

Hence, recalling (22.28) and integrating over y2, we get

b(w̃, w̃) = 2
∫ +∞

−∞
|ξ1|3|F(w)|2dξ1.

Then, defining the pseudo-differential operator Q( ∂∂s ) of order 3/2 with
principal symbol √

2|ξ1|3/2,
or equivalently as previously,

√
2(1 + |ξ1|2)3/4,

we have (always within our approximation)

b(ṽ, w̃) =
∫
Γ1

Q(
∂

∂s
)v Q(

∂

∂s
)wds. (22.29)

We observe that the operator Q is only concerned with the trace on Γ1,
so that we may either write ṽ, w̃ or v, w in (22.29).

The formal asymptotic problem becomes{
Find ṽε ∈ G such that ∀w̃ ∈ G∫
Γ0
P (∂ṽ

ε

∂n )P (∂w̃∂n )ds+ ε2
∫
Γ1
Q(ṽε) Q(w̃)ds = 〈f, w〉. (22.30)
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22.4.5 The Formal Asymptotics and Its Sensitive Behavior

In order to exhibit more clearly the unusual character of the problem, we shall
now write (22.30) under another equivalent form involving only the traces on
Γ1. Coming back to (22.19), let us define R0 as follows. For a given w ∈
C∞(Γ1) we solve (22.19) and we take the trace of ∂w̃

∂n on Γ0, and then

∂w̃

∂n |Γ0

= R0w. (22.31)

Using the regularity properties of the solution of (22.19), it follows that
R0w is in C∞(Γ0). In fact, R0 is a smoothing operator, sending any distribu-
tion into a C∞ function. Then, (22.30) may be written as a problem for the
traces on Γ1:{

Find vε ∈ H3/2(Γ1) such that ∀w ∈ H3/2(Γ1)∫
Γ0
P ( ∂∂s )R0v

εP ( ∂∂s )R0wds+ ε2
∫
Γ1
Q( ∂∂s )v

ε Q( ∂∂s )wds =
∫
Ω
Fw̃dx,

(22.32)
where the configuration space is obviously H3/2(Γ1). The left-hand side with
ε > 0 is continuous and coercive. We then define the new operators

A = R∗
0P

∗PR0 ∈ L(Hs(Γ1), Hr(Γ0)),∀s, r ∈ R,

B = Q∗Q ∈ L(H3/2(Γ1), H−3/2(Γ1)),

where R∗
0 is the adjoint of R0 (which is also smoothing), and (22.32) becomes(

A+ ε2B
)
vε = F, in H−3/2(Γ1).

Obviously, B is an elliptic pseudo-differential operator of order 3, whereas A
is a smoothing (non-local) operator.

This problem is somewhat simpler than the initial one (as on a manifold
of dimension 1), showing the interest of the formal asymptotics. It enters in a
class of sensitive problems addressed in [EgMeSa07] Section 2. It is apparent
that the limit problem (for ε = 0) has no solution in the distribution space
for any F not contained in C∞. Indeed, on the compact manifold Γ0, any
distribution is in someH−m(Γ0) space, which is sent into C∞ by the smoothing
operator A.

Remark 4. The drastically non-local character of the smoothing operator A
follows from the fact that it involves R0 and R∗

0 (see (22.31)). This is the
reason why the problem may be reduced to another one on the traces on Γ1.
The possibility of that reduction is a consequence of our approximation, where
the configuration space is formed by harmonic functions.
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[MeSa06] Meunier, N., Sanchez-Palencia, É.: Sensitive versus classical perturba-
tion problem via Fourier transform. Math. Models Methods Appl. Sci.,
16, 1783–1816 (2006).

[MeEtAl07] Meunier, N., Sanchez-Hubert, J., Sanchez Palencia, E.: Various kinds
of sensitive singular perturbations. Ann. Math. Blaise Pascal, 14, 199–
242 (2007).

[SaHuSa97] Sanchez-Hubert, J., Sanchez-Palencia, É.: Coques Élastiques Minces.
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23.1 Introduction and Statement of the Main Results

Let Ω be a bounded Lipschitz domain in Rn and let ν be the outward unit
n∑
i=1
∂2
i

in Ω with homogeneous Robin boundary condition reads{
Δu = f in Ω,

∂νu+ λTru = 0 on ∂Ω,
(23.1)

where ∂νu denotes the normal derivative of u on ∂Ω and Tr stands for the
boundary trace operator. In the case when λ = ∞, the boundary condition
in (23.1) should be understood as Tru = 0 on ∂Ω. The solution operator
to (23.1) (i.e., the assignment f �→ u) is naturally expressed as

Gλf(x) :=
∫
Ω

Gλ(x, y)f(y) dy, x ∈ Ω, (23.2)

where Gλ is the Green function for the Robin Laplacian. That is, for each
x ∈ Ω, Gλ satisfies{

ΔyGλ(x, y) = δx(y), y ∈ Ω,
∂ν(y)Gλ(x, y) + λGλ(x, y) = 0, y ∈ ∂Ω,

(23.3)

where δx is the Dirac distribution with mass at x. The scope of this chapter is
to investigate mapping properties of the operator ∇Gλ when acting on L1(Ω),
the Lebesgue space of integrable functions in Ω. In this regard, weak-Lp spaces
over Ω, which we denote by Lp,∞(Ω), play an important role (for a precise
definition see Section 23.2). The following theorem summarizes the regularity
results for Gλ and Gλ proved in this chapter.
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Theorem 1. Let Ω be a bounded Lipschitz domain in Rn and fix λ ∈ [0,∞].
Then

∇[Gλ(x, ·)] ∈ L
n

n−1 ,∞(Ω) uniformly in x ∈ Ω. (23.4)

In particular,

∇Gλ : L1(Ω) → L
n

n−1 ,∞(Ω) is a bounded operator. (23.5)

A number of results in the spirit of Theorem 1 are known for the Green
function and the Green potential for the Laplacian on a bounded Lipschitz do-
main when the boundary condition is of Dirichlet or Neumann type. The fact
that the gradient of the Dirichlet Green potential GD maps boundedly L1(Ω)
into L

n
n−1 ,∞(Ω) was proved by B. Dahlberg (see [Da79]). His proof relies on

the use of the maximum principle, and it cannot be used to handle a Neu-
mann boundary condition. This obstacle was overcome in [Mi08], where a new
approach was devised to prove that when Ω is a bounded Lipschitz domain,
the Neumann Green function satisfies ∇[GN (x, ·)] ∈ L n

n−1 ,∞(Ω), uniformly
for x ∈ Ω, and that ∇GN , the gradient of the corresponding Neumann Green
potential, maps L1(Ω) into L

n
n−1 ,∞(Ω) boundedly. A key ingredient in [Mi08]

is establishing the membership of the normal and tangential derivatives to the
boundary of Ω of the free space fundamental solution for the Laplacian to a
weak Hardy space, which is done there by employing Clifford algebras. This
Clifford algebra approach cannot be readily adapted to the setting of elliptic
systems. To handle the case of a second order, constant coefficient, elliptic
system in a bounded Lipschitz domain Ω ⊂ Rn, a new technique was devel-
oped in [Mi07] for the proof of the membership to a weak Hardy space of the
co-normal and tangential derivatives to ∂Ω of the corresponding fundamental
(matrix) solution. With this in hand, it was then proved in [Mi07] that when
n = 3, ∇[GD(x, ·)] and ∇[GN (x, ·)] belong to L

3
2 ,∞(Ω), uniformly for x ∈ Ω,

and that ∇GD and ∇GN map L1(Ω) boundedly into L
3
2 ,∞(Ω). The topic of

this chapter is a natural continuation of this line of research since we address
here the more general case of the Robin boundary condition (which contains
as particular cases the Dirichlet and Neumann boundary conditions). The
proof of Theorem 1 is contained in Section 23.3. Various definitions, notation,
and some preliminary results are collected in Section 23.2.

23.2 Preliminaries

Let (X,μ) be a measure space and for a measurable function f : X → R set

m(λ, f) := μ({x ∈ X : |f(x)| > λ}), ∀λ > 0, (23.6)

and define the non-increasing rearrangement of f as

f∗(t) := inf{λ > 0 : m(λ, f) ≤ t}, t > 0. (23.7)
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In particular, m(λ, f) = m(λ, f∗) for every λ > 0. If 0 < p ≤ ∞, 0 < q ≤ ∞,
consider the Lorentz scale (see, e.g., [BeLo76])

Lp,q(X) :=
{
f : X → R measurable : t1/pf∗(t) ∈ Lq((0,∞), dtt )

}
, (23.8)

equipped with the quasi-norm

‖f‖Lp,q(X) := ‖t1/pf∗(t)‖Lq((0,∞), dt
t ). (23.9)

Note that the scale of Lorentz spaces contains Lebesgue spaces

Lp,p(X) = Lp(X), 0 < p ≤ ∞. (23.10)

Also, an equivalent quasi-norm for the case when q = ∞ and 0 < p ≤ ∞,
corresponding to weak-Lp spaces, is

‖f‖Lp,∞(X) ≈ sup {λ(m(λ, f))
1
p : λ > 0}. (23.11)

For further reference, we note that when X is σ-finite and non-atomic,(
Lp,q(X)

)∗
= Lp

′,∞(X) for 1 < p <∞, 0 < q ≤ 1, and
1
p

+
1
p′ = 1.

(23.12)
Recall that a function ϕ : Rn−1 → R is called Lipschitz provided there ex-

ists a constantM > 0 such that ‖∇ϕ‖L∞(Rn−1) < M . An unbounded Lipschitz
domain Ω ⊂ Rn is the upper graph of a Lipschitz function ϕ : Rn−1 → R, i.e.,

Ω = {x = (x′, xn) ∈ Rn−1 × R : xn > ϕ(x′)}.

A domain Ω ⊂ Rn is called a bounded Lipschitz domain provided its boundary
∂Ω can be covered by finitely many balls {B(xi, Ri)}1≤i≤N , xi ∈ ∂Ω, Ri > 0,
with the property that for each i there exists an unbounded Lipschitz domain
Ωi (considered in a system of coordinates which is a rotation and a translation
of the original one) such that Ω ∩B(xi, Ri) = Ωi ∩B(xi, Ri), 1 ≤ i ≤ N . See,
e.g., the definition and comments on p. 189 in Stein’s book [St70].

Later on, it will be useful for us to note that, for each Lipschitz domain
Ω ⊂ Rn and each α > 0,

|x− ·|−α ∈ Ln
α ,∞(Ω) and |x− ·|−α ∈ Ln−1

α ,∞(∂Ω) uniformly in x ∈ Rn.
(23.13)

For 1 ≤ p ≤ ∞ we denote by Lp(Ω) the Lebesgue measurable functions
which are pth power integrable on Ω. It is well known that for each Lipschitz
domain Ω ⊂ Rn there is a canonical surface measure dσ, with respect to
which the outward unit normal, ν, is well defined at almost every boundary
point. As such, the Lebesgue space of measurable functions which are pth
power integrable with respect to dσ on ∂Ω is meaningful, and we denote it
by Lp(∂Ω). Moreover, the Lp-based Sobolev space of order one on ∂Ω will be
denoted by Lp1(∂Ω).
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For a fixed function ψ in the Schwartz class S(Rn) with
∫

Rn ψ �= 0, and
for t > 0, x ∈ Rn, we let ψt(x) := t−nψ

(
x
t

)
. Then, for 0 < p < ∞, the local

Hardy spaces are defined as

hp(Rn) := {f ∈ S ′(Rn) : sup
0<t<1

|(f ∗ ψt)| ∈ Lp(Rn)}, (23.14)

equipped with the quasi-norm

‖f‖hp(Rn) :=
∥∥ sup

0<t<1
|(f ∗ ψt)|

∥∥
Lp(Rn). (23.15)

Hereafter S ′(Rn) denotes the space of tempered distributions in Rn. Weak
local Hardy spaces are defined in a similar manner to (23.14). Concretely, for
0 < p <∞,

hp,∞(Rn) := {f ∈ S ′(Rn) : sup
0<t<1

|(f ∗ ψt)| ∈ Lp,∞(Rn)}, (23.16)

equipped with the quasi-norm

‖f‖hp,∞(Rn) :=
∥∥ sup

0<t<1
|(f ∗ ψt)|

∥∥
Lp,∞(Rn). (23.17)

Parenthetically, let us point out that different choices of the Schwartz function
ψ give equivalent quasi-norms in (23.15), (23.17).

In the case when Ω ⊂ Rn is the domain lying above the graph of the
Lipschitz function ϕ : Rn−1 → R, for n−1

n < p < ∞, we define local Hardy
spaces on ∂Ω by using an appropriate change of coordinates, i.e.,

f ∈ hp(∂Ω)
def⇐⇒ f(x′, ϕ(x′))

√
1 + |∇ϕ(x′)|2 ∈ hp(Rn−1), (23.18)

and
‖f‖hp(∂Ω) :=

∥∥f(x′, ϕ(x′))
√

1 + |∇ϕ(x′)|2
∥∥
hp(Rn−1). (23.19)

For n−1
n < p <∞ we also set

f ∈ hp,∞(∂Ω)
def⇐⇒ f(x′, ϕ(x′))

√
1 + |∇ϕ(x′)|2 ∈ hp,∞(Rn−1), (23.20)

and

‖f‖hp,∞(∂Ω) :=
∥∥f(x′, ϕ(x′))

√
1 + |∇ϕ(x′)|2

∥∥
hp,∞(Rn−1). (23.21)

In the case when Ω ⊂ Rn is a fixed, arbitrary bounded Lipschitz do-
main, local Hardy spaces hp(∂Ω), n−1

n < p < ∞, can be defined by lifting
their Euclidean counterpart via a standard localization procedure (involving
a smooth partition of unity subordinate to a covering of ∂Ω with coordinate
balls) and a change of variables of the form (23.18). We remark that, for each
1 < p < ∞, hp(∂Ω) = Lp(∂Ω) holds. Weak local Hardy spaces hp,∞(∂Ω),
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n−1
n < p <∞, can also be introduced in a similar fashion. When 1 < p <∞,
hp,∞(∂Ω) = Lp,∞(∂Ω).

We next recall a few interpolation results that will be used in Section 23.3
First, the real interpolation method gives that for n−1

n < p0, p1 <∞, 0 < θ <
1, and 1

p = 1−θ
p0

+ θ
p1

, there holds

(hp0(∂Ω), hp1(∂Ω))θ,∞ = hp,∞(∂Ω). (23.22)

Second, the Lorentz spaces Lp,q(Ω) arise naturally via real interpolation be-
tween Lebesgue spaces over Ω. More precisely, for 0 < p0 < p1 ≤ ∞,

(Lp0(Ω), Lp1(Ω))θ,q = Lp,q(Ω), (23.23)

if p0 < q ≤ ∞, 1
p = 1−θ

p0
+ θ

p1
, and 0 < θ < 1.

The duality result (
Ln,1(Ω)

)∗
= L

n
n−1 ,∞(Ω), (23.24)

which is a consequence of (23.12), will be useful in the proof of Theorem 1.
Given a Lipschitz domain Ω ⊂ Rn, for some fixed, sufficiently large κ =

κ(∂Ω) > 0, we set

γ(x) := {y ∈ Ω : |x− y| ≤ κ dist (y, ∂Ω)}, x ∈ ∂Ω. (23.25)

Then if u is defined in Ω, N (u), the non-tangential maximal function of u, is
defined at boundary points by

N (u)(x) := sup {|u(y)| : y ∈ γ(x)}, x ∈ ∂Ω. (23.26)

Next, we introduce layer potentials associated to the Laplacian. To do so,
we first recall the fundamental solution for Δ in Rn,

Γ (x) =

⎧⎪⎨⎪⎩
1

ωn−1(2−n)
1

|x|n−2 , n ≥ 3,

1
2π log |x|, n = 2,

(23.27)

where ωn−1 is the surface measure of the unit sphere in Rn. Then, the single-
layer potential operator, acting on an arbitrary function ψ : ∂Ω → R, is
defined according to

Sψ(x) :=
∫
∂Ω

Γ (x− y)ψ(y) dσ(y), for x ∈ Ω. (23.28)

The normal derivative and the boundary trace of (23.28) are, respectively,
given by

∂νSψ =
(
−1

2I +K∗)ψ on ∂Ω, (23.29)

Tr
[
Sψ
]

= Sψ on ∂Ω, (23.30)
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where K∗ is the principal-value operator

K∗ψ(x) := p.v.

∫
∂Ω

∂ν(x)[Γ (y − x)]ψ(y) dσ(y), for a.e. x ∈ ∂Ω, (23.31)

and
Sψ(x) :=

∫
∂Ω

Γ (x− y)ψ(y) dσ(y), for x ∈ ∂Ω. (23.32)

Finally, before we proceed with the proof of Theorem 1, we record the
following useful result (for a reference, see the discussion in [DaKe87]).

Proposition 1. Let Ω be a bounded Lipschitz domain in Rn. Then, for each
n−1
n < p <∞, the following holds:

K∗ : hp(∂Ω) −→ hp(∂Ω) is a bounded operator, (23.33)

and

S : hp(∂Ω) −→ hp(∂Ω) is a compact operator. (23.34)

Strictly speaking, (23.34) is not explicitly stated in [DaKe87] but follows from
the mapping properties of the single-layer operator proved there and known
(compact) embedding results.

23.3 Proof of Theorem 1

The strategy for the proof of (23.4) is to express the Green functionGλ(x, y) as
the difference between the fundamental solution for the Laplacian in the entire
space and a harmonic correction. The harmonic correction is, in turn, written
as an appropriate layer potential operator acting on a linear combination
between the trace of the fundamental solution for the Laplacian and its normal
derivative on the boundary (see (23.38) below). Then, it suffices to show that
this linear combination belongs to the Hardy space h1,∞(∂Ω) and that the
gradient of the aforementioned layer potential operator maps h1,∞(∂Ω) into
the desired weak Lebesgue space. To execute this plan, we start by proving
the following invertibility result.

Theorem 2. Suppose that Ω is a bounded Lipschitz domain in Rn. Then,
there exists ε = ε(∂Ω) > 0 such that for each 1− ε < p < 2 + ε the operator

−1
2I +K∗ + λS : hp(∂Ω) −→ hp(∂Ω) (23.35)

is an isomorphism. Moreover, the operator

− 1
2I +K∗ + λS : h1,∞(∂Ω) −→ h1,∞(∂Ω) is an isomorphism. (23.36)
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Proof. Combining the results in in [DaKe87] and [Br95], it follows that there
exists ε = ε(∂Ω) > 0 such that −1

2I +K∗ is an isomorphism from the space{
f ∈ hp(∂Ω) :

∫
∂Ω
f dσ = 0

}
into itself, for 1 − ε < p < 2 + ε. Thus,

− 1
2I +K∗ is a Fredholm operator with index zero from hp(∂Ω) into hp(∂Ω),

for all 1− ε < p < 2 + ε. In addition, using (23.34), we can conclude that the
operator (23.35) is Fredholm with index zero.

Next we claim that (23.35) is one to one if p = 2. To see the latter, let
f ∈ L2(∂Ω) be such that (−1

2I+K
∗+λS)f = 0 and set u := Sf . ThenΔu = 0

in Ω, N (u) ∈ L2(∂Ω), and ∂νu + λu = 0 on ∂Ω. Using this information, we
can further integrate by parts to obtain∫

Ω

|∇u|2dx = −
∫
Ω

uΔudx+
∫
∂Ω

u(∂νu) dσ(x)

= −λ
∫
∂Ω

|u|2dσ(x) ≤ 0. (23.37)

From (23.37) we clearly have that ∇u = 0 in Ω, and since ∂νu + λu = 0 on
∂Ω, it follows that u = 0 on ∂Ω; hence, in fact u = 0 in Ω. Since Sf = 0 in Ω,
taking the boundary trace and using (23.30) we obtain that Sf = 0 on ∂Ω.
In turn, because S : L2(∂Ω) → L2

1(∂Ω) is an isomorphism (see [Ve84]), this
implies f = 0 as desired. This completes the proof of the claim that (23.35)
is one to one if p = 2.

Since we have already seen that (23.35) is Fredholm with index zero, we
can now infer that (23.35) is an isomorphism if p = 2, and furthermore, by a
perturbation argument, that (23.35) is an isomorphism for 2− ε < p < 2 + ε.
On the other hand, L2(∂Ω) ↪→ hp(∂Ω) densely for p < 2. Consequently,
the operator (23.35) has dense range for p < 2. Being also Fredholm with
index zero when 1 − ε < p < 2, it follows that (23.35) is an isomorphism
if 1 − ε < p < 2. This completes the proof of the fact that (23.35) is an
isomorphism for 1− ε < p < 2 + ε. The fact that the operator in (23.36) is an
isomorphism now follows by real interpolation and (23.22). This finishes the
proof of Theorem 2.

Proof (of Theorem 1). Recall the discussion at the beginning of this section
and start by claiming that, for each x, y ∈ Ω, x �= y, the Green function Gλ
as in (23.3) has the form

Gλ(x, y) = Γ (x− y) (23.38)

−S
[(
− 1

2I +K∗ + λS
)−1(

∂νΓ (x− ·) + λΓ (x− ·)
)]

(y).

Note that, once we prove that the right-hand side of (23.38) is meaningful, by
combining the properties of Γ with (23.29) and (23.30), it is not hard to see
that Gλ as in (23.38) is a solution of (23.3), and thus the claim will follow.
In fact, we will prove that the gradient in the variable y of the right-hand
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side of (23.38) belongs to L
n

n−1 ,∞(Ω), uniformly in x ∈ Ω. To this end, based
on (23.27) and (23.13), first observe that ∇Γ (x− ·) ∈ L n

n−1 ,∞(Ω), uniformly
in x ∈ Ω and Γ (x − ·) ∈ Ln−1

n−2 ,∞(∂Ω) uniformly in x ∈ Ω. Next, we use
the embedding L

n−1
n−2 ,∞(∂Ω) ↪→ h1,∞(∂Ω) (see [RuSi96]) to conclude that

Γ (x − ·) ∈ h1,∞(∂Ω) uniformly in x ∈ Ω. Since it was proved in [Mi08] that
∂νΓ (x − ·) ∈ h1,∞(∂Ω) uniformly in x, we can now infer that ∂νΓ (x − ·) +
λΓ (x− ·) ∈ h1,∞(∂Ω) uniformly in x ∈ Ω. As such, recalling Theorem 2, we
obtain that(

− 1
2I +K∗ + λS

)−1(
∂νΓ (x− ·) + λΓ (x− ·)

)
∈ h1,∞(∂Ω) (23.39)

uniformly in x ∈ Ω. Furthermore, since we have that the operator

∇S : h1,∞(∂Ω) −→ L
n

n−1 ,∞(Ω), (23.40)

is bounded (see [Mi08], page 3792 for a proof), we can conclude that the gra-
dient in the variable y of the right-hand side of (23.38) belongs to L

n
n−1 ,∞(Ω)

uniformly in x ∈ Ω. Hence, the claim is proved, and in the process we have
also proved (23.4).

To see why the operator in (23.5) is bounded, we recall (23.24) to further

conclude that ∇yGλ(x, y) ∈
(
Ln,1(Ω)

)∗
as a function in y, uniformly for

x ∈ Ω. Since Gλ(x, y) = Gλ(y, x), it follows from (23.2) that

(∇Gλ)∗ : Ln,1(Ω) −→ L∞(Ω)

is a bounded operator and, consequently,

∇Gλ :
(
L∞(Ω)

)∗
−→
(
Ln,1(Ω)

)∗
= L

n
n−1 ,∞(Ω) (23.41)

is also bounded. In particular, since L1(Ω) ↪→
(
L∞(Ω)

)∗
, we also have that

the operator (23.5) is bounded. This completes the proof of Theorem 1.
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24.1 Preliminaries and Statement of Main Result

Recall that a Lipschitz domain is a domain whose boundary is locally given by
graphs of Lipschitz functions. The formulation of, respectively, the Dirichlet
and regularity problems for the Laplacian in a Lipschitz domain Ω ⊂ Rn is

(DΔ)p

⎧⎪⎨⎪⎩
Δu = 0 in Ω,

Nu ∈ Lp(∂Ω),

u
∣∣
∂Ω

= f ∈ Lp(∂Ω),

(RΔ)p

⎧⎪⎨⎪⎩
Δu = 0 in Ω,

N (∇u) ∈ Lp(∂Ω),

u
∣∣
∂Ω

= f ∈ Lp1(∂Ω).

(24.1)

A few clarifications are in order here. First, the nontangential maximal oper-
ator of a given function u in Ω is defined by

(Nu)(X) := sup {|u(Y )| : Y ∈ Γ (X)}, X ∈ ∂Ω, (24.2)

where, for some fixed parameter κ > 0, the nontangential approach region
Γ (X) with vertex at X ∈ ∂Ω is defined as

Γ (X) := {Y ∈ Ω : |X − Y | ≤ (1 + κ) dist (Y, ∂Ω)}. (24.3)

Second, the nontangential boundary trace of a function u defined in Ω is taken
to be

u
∣∣∣
∂Ω

(X) := lim
Y →X

Y ∈Γ (X)

u(Y ), X ∈ ∂Ω, (24.4)

whenever meaningful. Also, Lp(∂Ω), 1 < p < ∞, is the usual Lebesgue scale
of measurable, pth power integrable functions with respect to the surface

p
1

consists of functions f for which

‖f‖Lp
1(∂Ω) := ‖f‖Lp(∂Ω) +

∑
1≤j,k≤n

‖∂τjk
f‖Lp(∂Ω) <∞, (24.5)

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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measure σ on ∂Ω. Going further, the Sobolev space L (∂Ω), 1 < p <∞, then
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where, with ν = (ν1, ..., νn) denoting the outward unit normal to ∂Ω,

∂τjk
:= νj∂k − νk∂j , 1 ≤ j, k ≤ n. (24.6)

Finally, we wish to point out that the statement that (DΔ)p is well posed indi-
cates that this problem has a unique solution (for any datum f), which satisfies
‖Nu‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), uniformly in f . Analogously, saying that (RΔ)p
is well posed amounts to the fact that this problem has a unique solution (for
any datum f), which satisfies ‖N (∇u)‖Lp(∂Ω) ≤ C‖f‖Lp

1(∂Ω), uniformly in f .
Moving on, we now consider the Dirichlet and regularity problems for the

bi-Laplacian, respectively,

(DΔ2)p

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ2u = 0 in Ω,

N (∇u) ∈ Lp(∂Ω),

u
∣∣
∂Ω

= f ∈ Lp1(∂Ω),

∂νu = g ∈ Lp(∂Ω),

(RΔ2)p

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δ2u = 0 in Ω,

N (∇∇u) ∈ Lp(∂Ω),

u
∣∣
∂Ω

= f0 ∈ Lp1(∂Ω),

(∂ju)
∣∣
∂Ω

= fj ∈ Lp1(∂Ω),

for each 1 ≤ j ≤ n.

(24.7)

Here and elsewhere, ∂ν denotes the normal derivative. Once again, we make
similar conventions (as in the case of the Laplacian) regarding the sense in
which the well-posedness of these two problems should be understood.

The main result of this chapter is the following theorem, relating the well-
posedness of the regularity problems both for Δ and Δ2 for some p ∈ (1,∞)
to the well-posedness of the Dirichlet problem for Δ2 for the Hölder conjugate
exponent of p. For a related result for second order operators, see [Sh07].

Theorem 1. Assume that Ω ⊂ Rn is a bounded Lipschitz domain and that
1 < p, p′ <∞ are such that 1/p+ 1/p′ = 1. Then

(RΔ)p′ and (RΔ2)p well-posed =⇒ (DΔ2)p′ well-posed. (24.8)

In the proof of this result we shall use the Neumann boundary conditions
introduced by G. Verchota in [Ve05]. Specifically, for θ ∈ R set

Kθ(u) := ∂ν(Δu) + 1
2(1+2θ+nθ2)

n∑
i,j=1

∂τij

(
∂ν∂τij

u
)
,

Mθ(u) := 2θ+nθ2
1+2θ+nθ2 Δu+ 1

1+2θ+nθ2 ∂
2
νu.

(24.9)

Lemma 1. Assume that Ω ⊂ Rn is a bounded Lipschitz domain and that
(RΔ)p′ is well posed for some p ∈ (1,∞) (where 1/p+ 1/p′ = 1). Then

Δ2u = 0 in Ω and N (∇∇u) ∈ Lp(∂Ω)
=⇒ (−Kθ(u),Mθ(u)) ∈ Lp−1(∂Ω)⊕ Lp(∂Ω), (24.10)

where Lp−1(∂Ω) :=
(
Lp

′
1 (∂Ω)

)∗
, plus a natural estimate.
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Proof. The membership in Lp(∂Ω) of Mθ(u) is a consequence of the fact
that N (∇∇u) ∈ Lp(∂Ω), plus a Fatou-type theorem which asserts that for
any such biharmonic function u, the nontangential pointwise trace (∂j∂ku)|∂Ω
exists a.e. on ∂Ω for every j, k ∈ {1, ..., n}. The same type of reasoning shows
that the second term in (24.9) belongs to Lp−1(∂Ω). Finally, it remains to
show that ∂ν(Δu) ∈ Lp−1(∂Ω). To this end, if v := Δu in Ω, it follows that
∂ν(Δu) = ∂νv and

Δv = 0 in Ω, N (v) ∈ Lp(∂Ω). (24.11)

Thus, we are left with showing that, in general,

(RΔ)p′ well-posed, and v as in (24.11)
=⇒ ∂νv ∈ Lp−1(∂Ω), plus an estimate. (24.12)

To justify (24.12), fix an arbitrary f ∈ Lp
′

1 (∂Ω) and let w solve the regularity
problem with this boundary datum. Green’s formula then allows us to define
∂νv as a functional in Lp−1(∂Ω) =

(
Lp

′
1 (∂Ω)

)∗
by setting

〈
∂νv , f

〉
:=
∫
∂Ω

v (∂νw) dσ. (24.13)

Since ‖∂νw‖Lp′ (∂Ω) ≤ ‖N (∇w)‖Lp′ (∂Ω) ≤ C‖f‖Lp′
1 (∂Ω), it follows that indeed

∂νv ∈ Lp−1(∂Ω) and ‖∂νv‖Lp
−1(∂Ω) ≤ C‖v‖Lp(∂Ω) ≤ C‖N v‖Lp(∂Ω). From this,

the desired conclusion readily follows.
For the bi-Laplacian Δ2, any bilinear form of the type

Bθ(u, v) :=
n∑

i,j=1

1
1 + 2θ + nθ2

×
∫
Ω

[(∂i∂j + θδijΔ)u](X)[(∂i∂j + θδijΔ)v](X) dX, (24.14)

where θ ∈ R is arbitrary, satisfies

Bθ(u, v) =
∫
Ω

(Δ2u)(X) v(X) dX, ∀u, v ∈ C∞
c (Ω). (24.15)

Successive integrations by parts give

Bθ(u, v) =
∫
∂Ω

[
Mθ(u)∂νv−Kθ(u)v

]
dσ if Δ2u = Δ2v = 0 in Ω. (24.16)

Let B(X), X ∈ Rn \{0}, be the canonical fundamental solution for Δ2 in Rn.
For each ḟ = (f0, f1, . . . , fn), the double layer for Δ2 is then defined as

(Ḋḟ)(X) := I + II + III, (24.17)
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where, for each X ∈ Ω, we have set

I :=
∫
∂Ω

∂ν(Y )[(ΔB)(X − Y )]f0(Y ) dσ(Y ),

II :=
∫
∂Ω

[(ΔB)(X − Y )]
n∑
k=1

νk(Y )fk(Y ) dσ(Y ),

III := 1
1+2θ+nθ2

∫
∂Ω

n∑
j,k=1

n∑
i,�=1

∂τjk(Y )[(∂kB)(X − Y )]

×
(
νi(Y )(∂τij(Y )f0)(Y )− νj(Y )ν�(Y )f�(Y )

)
dσ(Y ).

(24.18)

Also, for any functional Λ acting on families of functions (f0, f1, . . . , fn) de-
fined on ∂Ω, the single-layer potential for the bi-Laplacian is given by

(ṠΛ)(X) :=
〈(
B(X − ·)

∣∣
∂Ω
, (∇B)(X − ·)

∣∣
∂Ω

)
, Λ
〉
. (24.19)

These operators have many remarkable properties (cf. [MiMi08]). Among
these, we wish to single out the fact that

Δ2Ḋ = Δ2Ṡ = 0 in Ω, (24.20)

and that the following Green representation formula holds for any biharmonic
function u in Ω (which behaves reasonably near the boundary):

u = Ḋ
(
u
∣∣
∂Ω
, (∇u)

∣∣
∂Ω

)
− Ṡ
(
−Kθ(u), ν1Mθ(u), . . . , νnMθ(u)

)
in Ω.

(24.21)
In addition, whenever 1 < p, p′ <∞, 1/p+ 1/p′ = 1, the estimates

‖N (∇Ḋḟ)‖Lp(∂Ω) ≤ C‖ḟ‖L̇p
1,0(∂Ω),

‖N (∇∇Ḋḟ)‖Lp(∂Ω) ≤ C‖ḟ‖L̇p
1,1(∂Ω),

(24.22)

and
‖N (∇∇ṠΛ)‖Lp′ (∂Ω) ≤ C‖Λ‖(L̇p

1,0(∂Ω)
)∗ ,

‖N (∇ṠΛ)‖Lp′ (∂Ω) ≤ C‖Λ‖(L̇p
1,1(∂Ω)

)∗
(24.23)

are valid for some C = C(Ω, p) > 0, uniformly in ḟ and Λ. Above, we have
used the following notation:

L̇p1,0(∂Ω) :=
{
ḟ = (f0, f1, ..., fn) ∈ Lp1(∂Ω)⊕ Lp(∂Ω)⊕ · · · ⊕ Lp(∂Ω) :

∂τjk
f0 = νjfk − νkfj , 1 ≤ j, k ≤ n

}
, (24.24)

and
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L̇p1,1(∂Ω) :=
{
ḟ = (f0, f1, ..., fn) ∈ Lp1(∂Ω)⊕ · · · ⊕ Lp1(∂Ω) :

∂τjk
f0 = νjfk − νkfj , 1 ≤ j, k ≤ n

}
, (24.25)

both equipped with natural norms.

24.2 Proof of the Main Result

This section is concerned with the proof of Theorem 1. This requires a number
of preliminary results, which we now begin to address. First, we shall need
the fact that the “packing” map

ψ : L̇p
′

1,0(∂Ω) −→ Lp
′

1 (∂Ω)⊕ Lp′
(∂Ω), 1 < p′ <∞,

ψ(ḟ) :=
(
f0,
∑n

j=1 νjfj

)
, if ḟ = (f0, f1, . . . , fn),

(24.26)

is an isomorphism, whose inverse and dual are, respectively, given by

ψ−1 : Lp
′

1 (∂Ω)⊕ Lp′
(∂Ω) −→ L̇p

′
1,0(∂Ω)

ψ−1(F, h) = ḟ :=
(
F, (νjh+

∑n
k=1 νk∂τkj

F )1≤j≤n
)
,

(24.27)

and, with 1/p+ 1/p′ = 1,

ψ∗ : Lp−1(∂Ω)⊕ Lp(∂Ω) →
(
L̇p

′
1,0(∂Ω)

)∗
, ψ∗(f, g) =

(
f, (νjg)1≤j≤n

)
.(24.28)

Also,

(ψ−1)∗ = (ψ∗)−1 :
(
L̇p

′
1,0(∂Ω)

)∗
−→ Lp−1(∂Ω)⊕ Lp(∂Ω)

(ψ−1)∗Λ =
(
h0 −

∑n
j,k=1 ∂τkj

(νkhj) ,
∑n

j=1 νjhj

)
,

(24.29)

if the functional Λ ∈
(
L̇p

′
1,0(∂Ω)

)∗
acts as the boundary integral pairing

against the (n + 1)-tuple (h0, h1, ..., hn) ∈ Lp(∂Ω) ⊕ · · · ⊕ Lp(∂Ω). In par-
ticular, it can be checked that for any reasonable function u in Ω,

ψ
(
u|∂Ω , (∇u)

∣∣
∂Ω

)
= (u, ∂νu) and ψ−1(u, ∂νu) =

(
u|∂Ω , (∇u)

∣∣
∂Ω

)
. (24.30)

Next, consider the regularity-to-Neumann map

ΛRN (ḟ) := (−Kθ(u) , Mθ(u)) , (24.31)

where u solves (RΔ2)p for the boundary datum ḟ ∈ L̇p1,1(∂Ω). Observe that,
in concert with (24.28), Green’s integral representation formula gives
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u =
(
Ḋ − Ṡ ◦ (ψ∗ ◦ ΛRN )

)(
u
∣∣
∂Ω
, (∇u)|∂Ω

)
in Ω, (24.32)

for any biharmonic function u in Ω satisfying N (∇∇u) ∈ Lp(∂Ω). Thus, by
also taking (24.30) into account, we arrive at the conclusion that

u =
(
Ḋ − Ṡ ◦ (ψ∗ ◦ ΛRN )

)
◦ ψ−1

(
u
∣∣
∂Ω
, ∂νu

)
in Ω, (24.33)

for any biharmonic function u in Ω with N (∇∇u) ∈ Lp(∂Ω). The significance
of formula (24.33) is that it allows us to recover a biharmonic function u in
Ω (with a reasonable behavior near the boundary) solely from the knowledge
of its Dirichlet data

(
u
∣∣
∂Ω
, ∂νu

)
on ∂Ω. We shall use this as a blueprint for

constructing a solution for (DΔ2)p′ . Concretely, given the problem

(DΔ2)p′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Δ2u = 0 in Ω,

N (∇u) ∈ Lp′
(∂Ω),

u
∣∣
∂Ω

= f ∈ Lp
′

1 (∂Ω),

∂νu = g ∈ Lp′
(∂Ω),

(24.34)

consider the function

u :=
(
Ḋ − Ṡ ◦ (ψ∗ ◦ ΛRN )

)
◦ ψ−1(f, g) in Ω. (24.35)

By (24.20), we have that Δ2u = 0 in Ω, and we now wish to show that
N (∇u) ∈ Lp′

(∂Ω). To this end, let us observe first that Lemma 1 and the
fact that (RΔ2)p is well posed imply that

ΛRN : L̇p1,1(∂Ω) −→ Lp−1(∂Ω)⊕ Lp(∂Ω) (24.36)

is a well defined linear, and bounded operator. Thus, by (24.28), so is

ψ∗ ◦ ΛRN : L̇p1,1(∂Ω) −→
(
L̇p

′
1,0(∂Ω)

)∗
. (24.37)

On the other hand, from the solvability of (RΔ2)2 (cf. [PiVe95], [Ve05]), by
letting u, v solve (RΔ2)2 with data ḟ , ġ and using (24.16) plus the fact that
the bilinear form in (24.14) is symmetric, it follows that〈

ΛRN (ḟ) , ψ(ġ)
〉

=
〈
ψ(ḟ) , ΛRN (ġ)

〉
for every ḟ , ġ ∈ L̇2

1,1(∂Ω), (24.38)

where 〈·, ·〉 is the integral pairing on ∂Ω. Hence, ψ∗ ◦ ΛRN is formally self-
adjoint which, given that (24.37) is bounded, allows us to conclude that

ψ∗ ◦ ΛRN : L̇p
′

1,0(∂Ω) −→
(
L̇p1,1(∂Ω)

)∗
(24.39)
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is also going to be a well defined, linear, and bounded operator. As a conse-
quence of this and cf. (24.27), (24.22), and (24.23), we may therefore conclude
that, for u as in (24.35), we have N (∇u) ∈ Lp′

(∂Ω) and

‖N (∇u)‖Lp′ (∂Ω) ≤ C
(
‖f‖

Lp′
1 (∂Ω) + ‖g‖Lp′ (∂Ω)

)
. (24.40)

This estimate is also useful in the verification of the boundary conditions
u|∂Ω = f , ∂νu = g, a task to which we now turn. Indeed, from to (24.40)
(used together with (24.22)–(24.23)), it follows that the assignment

Lp
′

1 (∂Ω)⊕ Lp′
(∂Ω) ' (f, g) �→

(
u
∣∣
∂Ω
, ∂νu

)
∈ Lp

′
1 (∂Ω)⊕ Lp′

(∂Ω) (24.41)

is well defined, linear, and bounded (if u is as in (24.35)). Our goal is to prove
that this is the identity operator on the space Lp

′
1 (∂Ω)⊕ Lp′

(∂Ω). Given the
boundedness of (24.41), it therefore suffices to establish that (24.41) acts as
the identity on a dense subspace V of Lp

′
1 (∂Ω)⊕Lp′

(∂Ω). However, we know
this to be the case for V := ψ

(
L̇p1,1(∂Ω)

)
∩
(
Lp

′
1 (∂Ω)⊕Lp′

(∂Ω)
)
, from (24.32)

and the well-posedness of (RΔ2)p (“reverse engineering”).
In summary, the above reasoning shows that the Dirichlet problem (DΔ2)p′

(see (24.34)) has a solution which satisfies (24.40). To finish showing that
this problem is well posed, it remains to establish the uniqueness of such a
solution. To get started, we first construct a suitable Green function for the
bi-Laplacian. Concretely, for each X,Y ∈ Ω, X �= Y , we set

G(X,Y ) := B(X − Y )− wX(Y ), (24.42)

where wX solves the regularity problem{
Δ2wX = 0 in Ω, N (∇∇wX) ∈ Lp(∂Ω),

wX |∂Ω = B(X − ·)|∂Ω , (∇wX)|∂Ω = (∇B)(X − ·)|∂Ω .
(24.43)

Then for each X ∈ Ω we have⎧⎪⎪⎨⎪⎪⎩
Δ2
YG(X,Y ) = δX(Y ),

G(X, ·)|∂Ω = (∇·G)(X, ·)|∂Ω = 0,

N
(
∇2
YG(X,Y )

)
∈ Lp(∂Ω).

(24.44)

Next, for each ε > 0 set

Ωε := {X ∈ Ω : dist(X, ∂Ω) > ε}, (24.45)

and pick a family of functions Φε ∈ C∞
c (Rn), indexed by ε ∈ (0, 1), with the

property that there exist two constants 0 < C1 < C2 <∞ such that

Φε ≡ 1 on ΩC2ε, Φε ≡ 0 on Rn \ΩC1ε , and |∂αΦε| ≤
Cα
ε|α| , (24.46)
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for each multi-index α. Fix next X ∈ Ω, and let ε > 0 be small enough such
that X ∈ Ωε. Then, if we let u be a null solution of the problem (24.34), we
may write

u(X) = (uΦε)(X) =
∫
Ω

Δ2
YG(X,Y )Φε(Y )u(Y ) dY. (24.47)

Integrating by parts and utilizing the support conditions on Φε, we obtain

u(X) =
∫
Ω

G(X, ·)Δ2(Φεu) =
∫
Ω

∑
|α|=|β|=2

G(X, ·)Aαβ∂α+β(Φεu), (24.48)

for some Aαβ ∈ R. Using Leibniz’s formula ∂α+β(Φεu) =
∑

α+β=γ+δ

Cαβγδ ∂
γΦε∂

δu

and the fact that
∑

|α|=|β|=2

AαβC
αβ
0(α+β)∂

α+βu = Δ2u = 0 (since Cαβ0(α+β) = 1),

we conclude that∑
|α|=|β|=2

Aαβ ∂
α+β(Φεu) =

∑
|α|=|β|=2

Aαβ
∑

α+β=γ+δ

γ 	=0

Cαβγδ (∂γΦε)∂δu. (24.49)

Next, split the sum on the right-hand side of (24.49) over the set of multi-
indices δ of length less than or equal to 1 and the set of multi-indices δ of
length ≥ 2. In the latter case, write δ = μ + θ with |μ| = 1. Then (24.48)–
(24.49) yield

u(X) = Iε + IIε, (24.50)

where Iε is a linear combination of terms of the form∫
Ω

G(X,Y )
∑

|α|=|β|=2

∑
α+β=γ+δ

γ 	=0,|δ|≤1

(∂γΦε)(Y )(∂δu)(Y ) dY, (24.51)

and, after integrating by parts, IIε is a linear combination of terms like∫
Ω

∑
|α|=|β|=2

∑
α+β=γ+δ

γ 	=0,|δ|≥2

∑
δ=μ+θ1+θ2
θ1 	=0,|μ|=1

∂θ1Y G(X,Y )(∂γ+θ2Φε)(Y )(∂μu)(Y ) dY. (24.52)

Notice that 1 ≤ |θ1| + |θ2| = 3 − |γ| ≤ 2, as γ �= 0. Also, using the fact that
γ �= 0, we can replace Ω by Ω \ Ωε as the domain of integration in (24.51)
and (24.52). Going further, we break up the integral over sufficiently small
domains (Ui)1≤i≤N , each contained in a local coordinate system where Ui∩Ω
can be regarded as the upper graph of a Lipschitz function φi : Qi → R, where
Qi is a cube in Rn−1. Based on these and (24.46), we may estimate |IIε| by
terms of the form
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N∑
i=1

∫
Qi

∫ Cε

0
ε−|γ|−|θ2||(∇u)(y′, t+ φi(y′))|

× |(∂θ1Y G)(X, (y′, t+ φi(y′)))| dt dy′, (24.53)

where the multi-indices are subject to the same conditions as above. If |θ1| = 2,
we keep this in the current format. If, on the other hand, |θ1| = 1, we use the
Fundamental Theorem of Calculus to write that, for each i and y′ ∈ Qi,

∂θ1Y G(X, (y′, t+ φi(y′))) = −
∫ t

0
(∂θ1+en

Y G)(X, (y′, r + φi(y′))) dr. (24.54)

This allows us to once again have a formula involving two derivatives on G
on the right-hand side of (24.54). Since on the domain of integration |t| < Cε,
we may further conclude that, in this case, for each y′ ∈ Qi, 1 ≤ i ≤ N ,

|∂θ1Y G(X, (y′, t+ φi(y′)))| ≤ ε sup
0<r<Cε

|(∇2
YG)(X, (y′, r + φi(y′)))|

≤ εN (∇2
YG(X, ·))(y′, φi(y′)) ∈ Lp(Qi). (24.55)

Therefore, since −|γ| − |θ2|+ 1 = −1 when |θ1| = 1, we altogether have

|IIε| ≤ C
N∑
i=1

∫
Qi

(
ε−1
∫ Cε

0
|(∇u)(y′, t+ φi(y′))|

× N ((∇2
YG)(X − ·))(y′, φi(y′)) dt

)
dy′. (24.56)

We shall employ Lebesgue’s dominated convergence theorem to show that the
expression inside parentheses above converges to zero as ε → 0. To this end,
we first observe that∣∣∣ε−1

∫ Cε

0
|(∇u)(y′, t+ φi(y′))| dt

∣∣∣ ≤ CN (∇u)(y′, φi(y′)) (24.57)

and recall that, by hypothesis, N (∇u)(y′, φ(y′)) ∈ Lp
′
(Qi). Thus, (24.55)

ensures that the uniform pointwise domination part of Lebesgue’s theorem is
satisfied. As for pointwise convergence to zero, we make the simple observation
that if f : (0, 1) → R is a continuous function and limt→0+ f(t) = 0, then
limε→0+

1
ε

∫ ε
0 f(t) dt = 0 (as seen easily from an application of the mean value

theorem). Since, by hypothesis and by (24.30), limt→0+(∇u)(y′, t+φi(y′)) = 0
for a.e. y′ ∈ Qi, the above observation applies and shows that, pointwise a.e.,
the integrand in (24.56) converges to zero. Thus, the Lebesgue dominated
convergence theorem gives

lim
ε→0

IIε = 0. (24.58)

Turning our attention to Iε, for the terms in which δ = 0, we use the
Fundamental Theorem of Calculus (as in the previous step) to write
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u(y′, t+ φi(y′)) = −
∫ t

0
(∂nu)(y′, r + φi(y′)) dr. (24.59)

Given that |t| ≤ Cε, for each y′ ∈ Qi and 1 ≤ i ≤ N , we get∣∣∣u(y′, t+ φi(y′))
∣∣∣ ≤ Cε sup

0<r<Cε

∣∣∣(∇u)(y′, r + φi(y′))
∣∣∣

≤ CεN (∇u)(y′, φi(y′)). (24.60)

Also, proceeding as in (24.54)–(24.55), we obtain

|G(X, (y′, t+ φi(y′)))| ≤ ε2N (∇2G(X, ·))(y′, φi(y′)), (24.61)

given that y′ ∈ Qi, 1 ≤ i ≤ N . Therefore, (24.46) and (24.60)–(24.61) give
that the integrand in Iε is pointwise dominated in each Qi by

Cε
[
ε−|γ|ε2N (∇2G(X, ·))(y′, φi(y′))

][
ε1−|δ|N (∇u)(y′, φi(y′))

]
= N (∇u)(y′, φi(y′))N (∇2G(X, ·))(y′, φi(y′)) ∈ L1(Qi). (24.62)

Hence, the uniform domination condition in Lebesgue’s theorem is satisfied.
Also, as before, since for |θ| ≤ 1, each i ∈ {1, ..., N} and a.e. y′ ∈ Qi,

lim
ε→0

1
ε

∫ Cε

0
(∂θu)(y′, r + φi(y′)) dr = 0, (24.63)

Lebesgue’s dominated convergence theorem applies and gives

lim
ε→0

Iε = 0. (24.64)

Finally, (24.64), (24.58), and (24.50) give that u(X) = 0, and in turn u ≡ 0
on Ω. This finishes the proof of Theorem 1.
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25.1 Introduction

This chapter contains a simplified and improved version of the results obtained
by the authors earlier. Wave propagation is discussed in a network of branched
thin wave guides when the thickness vanishes and the wave guides shrink to a
one-dimensional graph. It is shown that asymptotically one can describe the
propagating waves, the spectrum and the resolvent in terms of solutions of
ordinary differential equations (ODEs) on the limiting graph. The vertices of
the graph correspond to junctions of the wave guides. In order to determine
the solutions of the ODEs on the graph uniquely, one needs to know the gluing
conditions (GC) on the vertices of the graph.

Unlike other publications on this topic, we consider the situation when
the spectral parameter is greater than the threshold, i.e., the propagation of
waves is possible in cylindrical parts of the network. We show that the GC
in this case can be expressed in terms of the scattering matrices related to
individual junctions. The results are extended to the values of the spectral
parameter below the threshold and around it.

Consider the stationary wave (Helmholtz) equation

Hεu = −ε2Δu = λu, x ∈ Ωε, Bu = 0 on ∂Ωε, (25.1)

in a domain Ωε ⊂ Rd, d ≥ 2, with infinitely smooth boundary (for simplicity),
which has the following structure: Ωε is a union of a finite number of cylinders
Cj,ε (which will be called channels) of lengths lj , 1 ≤ j ≤ N , with diameters of
cross sections of order O (ε) and domains J1,ε, . . . , JM,ε (which will be called
junctions) connecting the channels into a network. It is assumed that the
junctions have diameters of the same order O(ε). The boundary condition
(BC) has the form: B = 1 (the Dirichlet BC) or B = ∂

∂n (the Neumann BC)
or B = ε ∂∂n
is real valued and does not depend on the longitudinal (parallel to the axis)
coordinate on the boundary of the channels. One also can impose one type of
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+ α(x), where n is the exterior normal and the function α ≥ 0
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BC on the lateral boundary of Ωε and another BC on the free ends (which
are not adjacent to a junction) of the channels.

The axes of the channels form edges Γj , 1 ≤ j ≤ N , of the limiting (ε→ 0)
metric graph Γ . The junctions shrink to vertices of the graph Γ when ε→ 0.
We denote the set of vertices vj by V . Let m channels have infinite length
(m = 0 for bounded Ωε). We start the counting of Cj,ε with the infinite
channels. So, lj = ∞ for 1 ≤ j ≤ m. See Figure 25.1.

Γ

C
C

C
J

J

1,ε

4,ε

6,εC
3,εJ

5,ε

1,ε

2,εC

C

C

C

2,εJ

3,ε

7,ε

8,ε

4,ε

Fig. 25.1. An example of a domain Ωε with four junctions, four unbounded chan-
nels, and four bounded channels.

The goal of this chapter is the asymptotic analysis of the spectrum of Hε,
the resolvent (Hε − λ)−1, and solutions of the corresponding nonstationary
problems for the heat and wave equations as ε→ 0. One can expect that Hε
is close (in some sense) to a one-dimensional operator on the limiting graph
Γ with appropriate gluing conditions (GC) at the vertices v ∈ V . The ODE
on Γ appears in a natural way from the following principle: the oscillating
modes in the wave guides survive as ε → 0 and the exponentially decaying
and growing modes disappear. However, the justification of this fact is not
always simple. In order to determine the solutions of ODE on Γ uniquely, one
needs to know the GC on the vertices of Γ . The form of the GC in the general
situation was discovered quite recently in our papers [MoVa06]–[MoVa08]. It
turned out that they can be expressed in terms of scattering matrices for
problems of the wave propagation through individual junctions of Ωε. These
GC hold in all the cases: in the bulk of the spectrum λ > λ0, and near the
threshold λ ≈ λ0, for bounded and unbounded Ωε.

Equation (25.1) degenerates when ε = 0. One could omit ε2 in (25.1).
However, the problem under consideration would remain singular, since the
domain Ωε shrinks to the graph Γ as ε → 0. The presence of this coefficient
in the equation is convenient, since it makes the spectrum less vulnerable to
changes in ε. As we shall see, in some important cases (spider domains Ωε), the
spectrum of the problem (25.1) does not depend on ε, and the spectrum in the
same cases will be magnified by a factor of ε−2 if ε2 in (25.1) is omitted. The
operator Hε = −ε2Δ introduced in (25.1) will be considered as the operator
in L2(Ωε).
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An important class of domains Ωε are the self-similar domains with only
one junction and all the channels of infinite length. We shall call them spider
domains. Thus, if Ωε is a spider domain, then there exists a point x̂ = x(ε)
and an ε-independent domain Ω such that

Ωε = {(x̂+ εx) : x ∈ Ω}, (25.2)

i.e., Ωε is the ε-contraction of Ω = Ω1.
For simplicity, we shall assume that Ωε is self-similar in a neighborhood

of each junction. Namely, let Jj(v),ε be the junction which corresponds to a
vertex v ∈ V of the limiting graph Γ . Consider a junction Jv,ε = Jj(v),ε and
all the channels adjacent to Jv,ε. If some of these channels have finite length,
we extend them to infinity. We assume that, for each v ∈ V , the resulting
domain Ωv,ε, which consists of the junction Jv,ε and the semi-infinite channels
emanating from it, is a spider domain. We also assume here that all the
channels Cj,ε have the same cross section ωε. This assumption is needed only
to make the results more transparent (the general case is studied in [MoVa07]).
From the self-similarity assumption, it follows that ωε is an ε-homothety of a
bounded domain ω ⊂ Rd−1.

Let λ0 < λ1 ≤ λ2 · · · be eigenvalues of the negative Laplacian −Δd−1
in ω with the BC B0u = 0 on ∂ω, where B0 coincides with the boundary
operator B on the channels, see (25.1), with ε = 1 in the case of the third
boundary condition. Let {ϕn(y)}, y ∈ ω ∈ Rd−1, be the set of correspond-
ing orthonormal eigenfunctions. Then λn are eigenvalues of −ε2Δd−1 in ωε,
and {ε−d/2ϕn(y/ε)} are the corresponding eigenfunctions. In the presence of
infinite channels, the spectrum of the operator Hε consists of an absolutely
continuous component which coincides with the semi-bounded interval [λ0,∞)
and a discrete set of eigenvalues. The eigenvalues can be located below λ0 and
can be embedded into the absolutely continuous spectrum. We will call the
point λ = λ0 the threshold since it is the bottom of the absolutely continu-
ous spectrum or (and) the first point of accumulation of the eigenvalues as
ε → 0. Let us consider two of the simplest examples: the Dirichlet problem
in a half-infinite cylinder and in a bounded cylinder of length l. In the first
case, the spectrum of the negative Dirichlet Laplacian in Ωε is pure absolutely
continuous and has multiplicity n + 1 on the interval [λn,∞). In the second
case, the spectrum consists of the set of eigenvalues λn,m = λn + ε2m2/l2,
n ≥ 0, m ≥ 1.

It was shown in [MoVa06]–[MoVa08] that the wave propagation governed
by the operator Hε, ε→ 0, as well as the asymptotic behavior of the resolvent
(Hε − λ)−1 and of the eigenvalues of Hε above λ0 can be described in terms
of the scattering solutions. While many particular cases of that problem with
λ = λ0 + O(ε2) or λ < λ0 were considered (see [DeTe06]–[RuSc01]), the
publications [MoVa06]–[MoVa08] were the first ones dealing with the case
λ ≥ λ0, and the first ones where the significance of the scattering solutions
for asymptotic analysis of Hε was established. In particular, it was shown
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there that in both cases, λ > λ0 and λ ≈ λ0, the GC of the operator on the
limiting graph Γ will be expressed in terms of the scattering matrices of the
auxiliary problems on the spider domains associated to individual junctions.
A more profound analysis of the case λ ≈ λ0 can be found in [MoVa08].

The main goal of this chapter is to overview the results of [MoVa07]–
[MoVa08] and simplify the proofs. We will mostly deal with the case of λ ∈
(λ0, λ1), where the results and proofs are more transparent. The number of
scattering solutions is the smallest in this case, and the scattering matrix is
of the smallest size (compared to the case λ > λ1). One of our main results is
as follows.

Theorem 1. If λ0 ≤ λ ≤ λ1, then the resolvent (H(1)
ε − λ)−1 can be approx-

imated by (H(1)
ε − (λ − λ0))−1, where H(1)

ε = −ε2 d2dt2 is the operator of the
second derivative defined on functions ς on the limiting graph Γ with the GC
of the form

iε[Iv + Tv(λ)]
d

dt
ςv(0)−

√
λ− λ0[Iv − Tv(λ)]ςv(0) = 0,

Here Tv(λ) is the scattering matrix of the auxiliary problem on the spider
domain which corresponds to the junction Jv,ε, and ςv is the vector which
consists of restrictions of the function ς (defined on Γ ) onto edges adjacent
to v.

To be more exact, for any compactly supported f , the following relation is
valid on channels outside of the support of f with exponential accuracy:

(Hε−λ)−1f ∼ [(H(1)
ε − (λ−λ0))−1f0]ϕ0(y/ε), ε→ 0, f0 =< f, ϕ0(y/ε) > .

A more accurate statement of this theorem as well as some of its general-
izations will be given in Section 25.5.

Note that the eigenvalues of the problem in Ωε are located not only below
the threshold, but also above it. They depend on ε and move very fast on the λ-
axis as ε→ 0. Thus, one cannot expect to obtain an asymptotic approximation
of the resolvent (Hε − λ)−1 when λ = λ′ > λ0 is fixed and ε → 0. An
asymptotic approximation of the resolvent (Hε − λ)−1 as ε→ 0 can be valid
only if an exponentially small (in ε), but depending on ε, set on the λ-axis is
omitted. Another option is to fix λ = λ′ > λ0 and pass to the limit as ε→ 0
without ε taking values in some small set which depends on λ′.

While the condition λ > λ0 is natural for the wave propagation, the prop-
erties of the heat and diffusion processes depend on the spectrum of Hε near
λ = λ0. As a by-product of the simpler approach to the problem introduced
below, we will get a better result concerning the asymptotic behavior of the
eigenvalues of Hε in bounded domains Ωε as ε → 0, λ = λ0 + O(ε2). It was
shown in [MoVa07], [MoVa08] that the main terms of the eigenvalues of Hε
when λ = λ0 + O(ε2), ε → 0, coincide with the eigenvalues of the opera-
tor on the limiting graph with the GC defined by the scattering matrix at
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λ = λ0. An explicit description of GC at λ = λ0 for arbitrary junctions (of
order O(ε)) was also given there. Significantly later some of our results were
repeated in [Gr08]. The new elements in [Gr08] are the description of the
location of the eigenvalues below the threshold and more accurate asymp-
totics of eigenvalues near the threshold. We will show here that the approach
used in [MoVa07] and [MoVa08] provides an approximation of the eigenvalues
near the threshold with an exponential accuracy as well as the location of the
eigenvalues below the threshold.

The plan of the chapter is as follows. The elliptic problem inΩε with a fixed
ε = 1 will be studied in the next section. In particular, the scattering solutions
are defined there. The asymptotic behavior of the resolvent (Hε−λ)−1 of the
spectrum and of the scattering solutions as ε → 0, λ > λ0, is obtained in
Section 25.3 for the simplest domains with one junction (spider domains). The
one-dimensional problem on the limiting graph will be studied in Section 25.4.
The case of arbitrary domainsΩε is considered in Section 25.5. The last section
is devoted to the study of the spectrum near the threshold.

25.2 Scattering Solutions and Analytic Properties of the
Resolvent When ε is Fixed

We introduce Euclidean coordinates (t, y) in channels Cj,ε chosen in such a
way that the t-axis is parallel to the axis of the channel (so, t is not a time,
but a space variable!), hyperplane Rd−1

y is orthogonal to the axis, and Cj,ε
has the following form in the new coordinates:

Cj,ε = {(t, εy) : 0 < t < lj , y ∈ ω}.

If a channel Cj,ε is bounded (lj < ∞), the direction of the t axis can be
chosen arbitrarily (at least for now). If a channel is unbounded, then t = 0
corresponds to its cross section, which is attached to the junction.

Let us recall the definition of scattering solutions for the problem (25.1)
in Ωε when λ ∈ (λ0, λ1). Consider the nonhomogeneous problem

(−ε2Δ− λ)u = f, x ∈ Ωε; Bu = 0 on ∂Ωε. (25.3)

Definition 1. Let f ∈ L2
com(Ωε) have a compact support, and λ < λ1. A so-

lution u of (25.3) is called outgoing if it has the following asymptotic behavior
at infinity in each infinite channel Cj,ε, 1 ≤ j ≤ m:

u = aje
i

√
λ−λ0

ε tϕ0(y/ε) +O(e−
αt
ε ), α > 0. (25.4)

Remark 1. 1. Here and everywhere below we assume that

Im
√
λ− λ0 ≥ 0. (25.5)
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Thus, outgoing solutions decay at infinity if λ < λ0.
2. Obviously, if (25.4) holds with some α > 0, then it holds with any

α <
√
λ1 − λ.

Definition 2. Let λ < λ1. A function Ψ = Ψ
(ε)
p , 1 ≤ p ≤ m, is called a

solution of the scattering problem in Ωε if

(−ε2Δ− λ)Ψ = 0, x ∈ Ωε; BΨ = 0 on ∂Ωε, (25.6)

and Ψ has the following asymptotic behavior in infinite channels Cj,ε, 1 ≤
j ≤ m:

Ψ (ε)
p = [δp,je−i

√
λ−λ0

ε t + tp,jei
√

λ−λ0
ε t]ϕ0(y/ε) +O(e−

αt
ε ), t→∞, α > 0.

(25.7)
Here δp,j is the Kronecker symbol, i.e., δp,j = 1 if p = j, δp,j = 0 if p �= j.

Remark 2. If λ0 < λ < λ1, then the term with the coefficient δp,j in (25.7)
corresponds to the incident wave (coming through the channel Cp,ε), and the
terms with coefficients tp,j describe the transmitted waves. The transmission
coefficients tp,j = tp,j(ε, λ) depend on ε and λ. The matrix

T = [tp,j ] (25.8)

is called the scattering matrix. Note that the scattering solution and scattering
matrix are defined for all λ < λ1. We assume that Im

√
λ− λ0 > 0 when

λ < λ0, and the incident wave is growing (exponentially) at infinity in this
case.

The outgoing and scattering solutions are defined similarly when λ ∈
(λn, λn+1) (see [MoVa07]). In this case, any outgoing solution has n + 1
waves in each channel propagating to infinity with the frequencies

√
λ− λs/ε,

0 ≤ s ≤ n. There are m(n + 1) scattering solutions: the incident wave may
come through one of m infinite channels with one of (n+ 1) possible frequen-
cies. The scattering matrix has the size m(n+ 1)×m(n+ 1) in this case.

Standard arguments based on the Green formula provide the following
statement.

Theorem 2. When λ0 < λ < λ1, the scattering matrix T is unitary and
symmetric (tp,j = tj,p).

The operator Hε = −ε2Δ, which corresponds to the eigenvalue prob-
lem (25.1), is nonnegative, and therefore the resolvent

Rλ = (Hε − λ)−1 : L2(Ωε) → L2(Ωε) (25.9)

is analytic in the complex λ-plane outside the positive semi-axis λ ≥ 0. If Ωε
is bounded (all the channels are finite), then operator Rλ is meromorphic in λ
with a discrete set Λ = {μj,ε} of poles of first order at the eigenvalues λ = μj,ε
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of operator Hε. If Ωε has at least one infinite channel, then the spectrum of
Hε has a more complicated structure (see Theorem 3 below). In this case, the
spectrum has an absolutely continuous component [λ0,∞), and the resolvent
Rλ is meromorphic in λ ∈ C\[λ0,∞). We are going to consider the analytic
extension of the operator Rλ to the absolutely continuous spectrum. One can
extend Rλ analytically from above (Imλ > 0) or below, if it is considered as an
operator in the following spaces (with a smaller domain and a larger range):

Rλ : L2
com(Ωε) → L2

loc(Ωε). (25.10)

These extensions do not coincide on [λ0,∞). To be specific, we always will
consider extensions from the upper half-plane (Imλ > 0). We will call (25.10)
the truncated resolvent of the operator Hε, since it can be identified with the
resolvent (25.9) multiplied from the left and right by a cut-off function.

Theorem 3. Let Ωε have at least one infinite channel. Then
(1) The spectrum of the operator Hε consists of the absolutely continuous

component [λ0,∞) and, possibly, a discrete set {μj,ε} of nonnegative eigen-
values λ = μj,ε ≥ 0 with the only possible limiting point at infinity. The
multiplicity of the absolutely continuous spectrum changes at points λ = λn,
and is equal to m(n+ 1) on the interval (λn, λn+1).

(2) The operator (25.10) admits a meromorphic extension from the upper
half-plane Imλ > 0 onto [λ0,∞) with the branch points at λ = λn of the
second order and poles of first order at λ = μj,ε. In particular, if λn ∈ {μj,ε},
then operator (25.10) has the form

Rλ =
A(n)
λ− λn

+O(
1√

|λ− λn|
), λ→ λn.

(3) If f ∈ L2
com(Ωε), λ < λ1, and λ is not a pole or the branch point

(λ = λ0) of the operator (25.10), then the problem (25.3), (25.4) is uniquely
solvable and the outgoing solution u can be found as the L2

loc(Ωε) limit

u = Rλ+i0f. (25.11)

(4) There exist exactly m different scattering solutions for the values of
λ < λ1 which are not a pole or the branch point of the operator (25.10), and
the scattering solution is defined uniquely after the incident wave is chosen.

(5) The scattering matrix T is analytic in λ, when λ < λ1, with a branch
point of second order at λ = λ0 and without real poles.

The matrix T is orthogonal if λ < λ0.

Remark 3. Let λn /∈ {μj,ε}. If the homogeneous problem (25.3) with λ = λn
has a non-trivial solution u such that

u = ajϕn(y/ε)+O(e−γt), x ∈ Cj,ε, t→∞, 1 ≤ j ≤ m, γ > 0, (25.12)

then Rλ+i0 = B(n)√
λ−λn

+ O(1), λ → λn. If such a solution u does not exist,
then operator (25.10) is bounded in a neighborhood of λ = λn.
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Proof (of Theorem 3). All the statements above concern the problem with a
fixed value of ε and can be proved using standard elliptic theory arguments.
A detailed proof can be found in [MoVa07]; a shorter version is given below.

In order to prove the part of statement (1) concerning the absolutely con-
tinuous spectrum of the operator H = −Δ, we split the domain Ωε into pieces
by introducing cuts along the bases t = 0 of all infinite channels. We denote
the new (not connected) domain by Ω′

ε, and denote the negative Dirichlet
Laplacian in Ω′

ε by H ′
ε, i.e., H ′

ε is obtained from Hε by introducing additional
Dirichlet boundary conditions on the cuts. Obviously, the operator H ′

ε has
the absolutely continuous spectrum described in statement (1) of the theo-
rem. Since the wave operators for the couple Hε, H ′

ε exist and are complete
(see [Bi62]), the operator Hε has the same absolutely continuous spectrum as
H ′
ε.

The remaining part of statement (1) and statements (2) and (3) can be
proved by one of the well-known equivalent approaches based on a reduction
of the boundary problem (25.3) to a Fredholm equation which depends an-
alytically on λ. For this purpose one can use a parametrix (almost inverse
operator): equation (25.3) is solved separately in channels and junctions, and
then the parametrix can be constructed from those local inverse operators
using a partition of unity (allowing one to glue the local inverse operators);
see [MoVa07]. A similar approach is based on gluing together these local in-
verse operators using Dirichlet-to-Neumann maps on the cuts of the channels,
as introduced in the previous paragraph.

Statements (4) and (5) follow immediately from statement (3) and Theo-
rem 2. Indeed, one can look for the solution Ψ (ε)

p of the scattering problem in
the form

Ψ (ε)
p = χe−i

√
λ−λ0

ε tϕ0(y/ε) + u, (25.13)

where χ ∈ C∞(Ωε), χ = 0 outside Cp,ε, χ = 1 in Cp,ε ∩ {t > 1}. This
reduces problem (25.6), (25.7) to problem (25.3), (25.4) for u with f sup-
ported on Cp,ε ∩ {0 ≤ t ≤ 1}. Statement (3) of the theorem, applied to the
latter problem, justifies statement (4). Function u, defined in (25.13), satis-
fies the homogeneous equation (25.3) in infinite channels Cj,ε, j �= p, and in
Cp,ε ∩ {t > 1}, and it is meromorphic at the bottoms of these channels (at
t = 0 for j �= p, and t = 1 when j = p). Solving the problems in these channels
by separation of variables, we obtain that the scattering matrix T is meromor-
phic in λ, when λ < λ1 with a branch point of second order at λ = λ0. It also
follows from here that T is real valued when λ < λ0. The analyticity of T and
Theorem 2 imply that T is orthogonal when λ < λ0. From the orthogonality
(λ < λ0) and unitarity (λ0 < λ < λ1) of T , it follows that T does not have
poles.
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25.3 Spider Domains, ε → 0

Let us recall that Ωε is called a spider domain if it is self-similar (see (25.2))
and consists of one junction and several semi-infinite channels.

Theorem 4. Let Ωε be a spider domain and λ < λ1. Then
(1) The eigenvalues λ = μj,ε = μj of operator Hε and the scattering matrix

T do not depend on ε.
(2) The truncated resolvent (25.10) has the following estimate: if f is

supported on an ε-neighborhood of the junction, then

|Rλf | ≤ Cδ−1ε−d/2||f ||L2 , λ < λ1, δ = dist(λ, {μj}), (25.14)

outside of the 2ε-neighborhood of the junction.
(3) The scattering solutions have the following form on the channels of the

domain:

Ψ (ε)
p = [δp,je−i

√
λ−λ0

ε t + tp,jei
√

λ−λ0
ε t]ϕ0(y/ε) + rεp,j , x ∈ Cj,ε, 1 ≤ j ≤ m,

(25.15)
where |rεp,j | ≤ Cδ−1e−α

t
ε when ε > 0, t

ε ≥ 1, and 0 ≤ λ < λ1. Here
α <

√
λ1 − λ is arbitrary, C = C(α).

Remark 4. Formula (25.15) looks similar to the definition (25.7). In fact, the
remainder in (25.7) decays only when t→∞, and (25.7) does not allow us to
single out the main term of asymptotics of scattering solutions as ε→ 0.

Proof (of Theorem 4). All the statements above follow immediately from the
self-similarity of the domain Ωε. Namely, we make the substitution

x→ x− x̂
ε

(25.16)

(see (25.2)) and reduce problem (25.3) in Ωε to the problem in Ω which
corresponds to ε = 1. These two problems have the same eigenvalues and
scattering matrices. This justifies the first statement. Let vλ, g be functions
Rλf, f after the change of variables (25.16). From statement (2) of Theorem 3
it follows that

||vλ||L2(K) ≤ Cδ−1||g||L2 = Cδ−1ε−d/2||f ||L2 ,

where K consists of the parts of the channels of Ω where 1 < t < 3. Then
the standard a priori estimates for the solutions of the equation Δu− λu = 0
imply the same estimate for |vλ| on the cross sections t = 2:

|vλ| ≤ Cδ−1ε−d/2||f ||L2 , t = 2.

The latter implies the same estimate for |vλ| when t > 2 by solving the
equation Δu − λu = 0 in the corresponding regions of the channels of Ω
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with the boundary condition at t = 2. This justifies the second statement
of Theorem 4. The last statement can be proved absolutely similarly. We
reduce the scattering problem in Ωε to the scattering problem in Ω and use
representation (25.13) with ε = 1. This implies (25.7) with ε = 1 and the
remainder term rp,j such that |rp,j | ≤ Cδ−1e−αt for t > 1. It remains only to
make the substitution inverse to (25.16).

In spite of its simplicity, Theorem 4 allows us to obtain two very important
results: small ε asymptotics of the spectrum and the resolvent (Hε − λ)−1 of
Hε for arbitrary networks of thin wave guides Ωε. For this purpose, we need
to rewrite (25.15) in a slightly different (less explicit) form.

We denote by ςp,j the linear combination of exponents in the square brack-
ets in (25.15). This is a function on the edge Γj of the graph. Let ςp be the
column vector with components ςp,j , 1 ≤ j ≤ m. Obviously, ςp satisfies the
equation

(ε2
d2

dt2
+ λ− λ0)ς = 0. (25.17)

We will use the notation Ψ (ε)
p for both the scattering solution and the column

vector whose components Ψ (ε)
p,j are restrictions of the scattering solution Ψ (ε)

p

on the channels Cj,ε, 1 ≤ j ≤ m. Then (25.15) can be rewritten in vector
form as

Ψ (ε)
p = ςpϕ0(y/ε) + r(ε)p = [epe−i

√
λ−λ0

ε t + tpei
√

λ−λ0
ε t]ϕ0(y/ε) + r(ε)p , (25.18)

where x ∈ ∪1≤j≤mCj,ε, r
(ε)
p is the vector with components r(ε)p,j , all compo-

nents ep,j of the vector ep are zeros except ep,p which is equal to one, and
tp is the pth column of the scattering matrix T . Let us construct the m×m
matrix with columns Ψ (ε)

p and the matrix ς with columns ςp, 1 ≤ p ≤ m. As
is easy to see, ς(0) = (I + T ), ς ′(0) = i

√
λ−λ0
ε (−I + T ), and therefore,

iε(I + T )ς ′(0)−
√
λ− λ0(I − T )ς(0) = 0. (25.19)

Of course, this equality also holds for individual columns ςp of matrix ς.
It is essential that the GC (25.19) together with some condition at in-

finity is equivalent to the explicit form of ςp given by (25.18). In fact, let ς
satisfy (25.17). Then

ς = αpe
−i

√
λ−λ0

ε t + βpei
√

λ−λ0
ε t

with some constant vectors αp, βp. We will say that ς = ψp is a solution of
the scattering problem on the graph Γ with the incident wave coming through
the edge Γp if ψp satisfies equation (25.17), GC (25.19), and αp = ep, i.e.,

ψp = epe
−i

√
λ−λ0

ε t + βpei
√

λ−λ0
ε t. (25.20)
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Thus, we specify the incident wave and impose the GC defined by the scat-
tering problem in Ωε, but we do not specify the scattering coefficients of the
outgoing wave. The next theorem shows that the scattering problem on the
graph will have the same scattering coefficients as the problem on Ωε.

Theorem 5. Formulas (25.15), (25.18), and Ψ (ε)
p = ψpϕ0(y/ε) + r

(ε)
p are

equivalent.

Proof. It was already shown that ςp defined in (25.18) satisfies (25.19). Con-
versely, if we write βp in (25.20) as tp+hp and substitute (25.20) into (25.19),
we will have hp = 0, i.e., ψp coincides with ςp defined in (25.18).

25.4 One-Dimensional Problem on the Graph

The spectrum of the operator Hε and the asymptotic behavior of the resolvent
will be expressed in terms of the solutions of a problem on the limiting graph
Γ which is studied in this section.

Let Ωε be an arbitrary (bounded or unbounded) domain as described in
the Introduction, and let Γ be the corresponding limiting graph. Points of Γ
will be denoted by γ with t being a parameter on each edge Γj of the graph.
We are going to introduce a special spectral problem

hες := −ε2 d
2

dt2
ς = (λ− λ0)ς (25.21)

on smooth functions ς = ς(γ) on Γ which satisfy the following GC at vertices.
We split the set V of vertices v of the graph into two subsets V = V1 ∪ V2,
where the vertices from the set V1 have degree 1 and correspond to the free
ends of the channels, and the vertices from the set V2 have degree at least 2
and correspond to the junctions Jv,ε. We keep the same BC at v ∈ V1 as at
the free end of the corresponding channel of Ωε (see (25.1)):

Bς = 0 at v ∈ V1. (25.22)

The GC at each vertex v ∈ V2 will be defined in terms of an auxiliary
scattering problem for a spider domain Ω′

v,ε. This domain is formed by the
individual junction Jv,ε which corresponds to the vertex v, and all channels
with an end at this junction, where the channels are extended to infinity if
they have a finite length. Let T = Tv(λ) be the scattering matrix for the
problem (25.1) in the spider domain Ω′

v,ε and let Iv be the unit matrix of the
same size as the size of T . We choose the parametrization on Γ in such a way
that t = 0 at v for all edges adjacent to this particular vertex. Let d = d(v) ≥ 2
be the order (the number of adjacent edges) of the vertex v ∈ V2. For any
function ς on Γ , we form a column vector ς(v) = ς(v)(t) with d(v) components
which is formed by the restrictions of ς on the edges of Γ adjacent to v. We
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will need this vector only for small values of t ≥ 0. The components of the
vector ς(v) are taken in the same order as the order of channels of Ω′

v,ε. The
GC at the vertex v ∈ V2 has the form

iε[Iv + Tv(λ)]
d

dt
ς(v)(t)−

√
λ− λ0[Iv − Tv(λ)]ς(v)(t) = 0, t = 0, v ∈ V2,

(25.23)
if λ �= λ0. Condition (25.23) can degenerate if λ = λ0, and it requires some
regularization in this case.

Solutions of (25.21) have the following form:

ς = aje
i

√
λ−λ0

ε t + bje−i
√

λ−λ0
ε t, γ ∈ Γj .

If Imλ > 0 and ς ∈ L2(Γ ), then bj = 0 for infinite edges (see (25.5)). Thus, if
ς satisfies equation (25.21) in a neighborhood of infinity, then

ς = aje
i

√
λ−λ0

ε t, γ ∈ Γj , 1 ≤ j ≤ m, t >> 1. (25.24)

We will assume that condition (25.24) holds also when λ is real, i.e., we con-
sider only those solutions of (25.21) with real λ = λ′ > λ0 which can be
obtained as the limit of solutions with complex λ = λ′ + iε when ε→ 0.

We will call function g = gλ(γ, ξ; ε), γ, ξ ∈ Γ , the Green function of the
problem (25.21)–(25.24) if it satisfies the equation (with respect to variable
γ)

−ε2 d
2

dt2
g − (λ− λ0)g = δξ(γ), (25.25)

and conditions (25.22)–(25.24). Here ξ is a point of Γ which is not a vertex,
and δξ(γ) is the delta function supported on γ = ξ.

Lemma 1. Let λ < λ1, λ �= λ0. Operator hε = −ε2 d2dt2 is symmetric on
the space of smooth, compactly supported functions on Γ which satisfy condi-
tions (25.22) and (25.23).

Proof. One needs only to show that〈
d

dt
ς
(v)
1 (t), ς(v)2 (t)

〉
−
〈
ς
(v)
1 (t),

d

dt
ς
(v)
2 (t)

〉
= 0, t = 0, v ∈ V2, (25.26)

for any two vector functions ς = ς
(v)
1 , ς = ς

(v)
2 which satisfy GC (25.23) (similar

relation at v ∈ V1 obviously holds). Let λ ∈ (λ0, λ1). Then matrix Tv(λ) is
unitary (Theorem 2). If matrix Iv + Tv is nondegenerate, we rewrite (25.23)
in the form d

dt ς
(v)(t) = Aς(v)(t), t = 0, where the matrix

A =
√
λ− λ0

iε
[Iv + Tv(λ)]−1[Iv − Tv(λ)]
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is real. The latter immediately implies (25.26). Similar arguments can be used
if Iv − Tv is nondegenerate. If both matrices are degenerate (i.e., Tv has both
eigenvalues, ±1), we consider a unitary matrix U such that UTvU∗ is a diag-
onal unitary matrix. Since 〈Uς1, Uς2〉 = 〈ς1, ς2〉 for any two vectors ς1, ς2, one
can easily reduce the proof of (25.26) to the case when Tv is a diagonal unitary
matrix. Then (25.23) implies the following relations for coordinates ςj(t) of
the vector ς(v)(t): ς ′j(0) = ajςj(0) or ςj(0) = bjς

′
j(0), where constants aj , bj are

real. The first case occurs if the corresponding diagonal element of Tv differs
from −1, the second relation is valid if this element is −1. These relations
for ςj(t) imply (25.26). Similar arguments can be used to prove (25.26) when
λ < λ0, since matrix Tv is orthogonal in this case (see Theorem 3).

Theorem 6. For any ε > 0 there is a discrete set Λ(ε) on the interval
[−λ0, λ1) such that the Green function gλ(γ, ξ; ε) exists for all λ < λ1,
λ /∈ Λ(ε), and has the form

gλ =
h(γ, ξ, λ, ε)
D(λ, ε)

, (25.27)

where function h is continuous on the set γ, ξ ∈ Γ, λ < λ1, ε > 0 and
uniformly bounded on each bounded subset, and

D(λ, ε) = ΣNm=1cm(λ)ei
√

λ−λ0
ε sm . (25.28)

Here sm are constants, functions cm(λ) are analytic in λ < λ1 with a branch
point of second order at λ = λ0, and D �= 0 if λ < λ0.

Proof. We fix the parametrization on each edge Γj of the graph. Then, obvi-
ously,

gλ = aje
−i

√
λ−λ0

ε t + bjei
√

λ−λ0
ε t, γ ∈ Γj , if ξ /∈ Γj , (25.29)

gλ = aje
−i

√
λ−λ0

ε t + bjei
√

λ−λ0
ε t +

ε√
λ− λ0

sin[
√
λ− λ0

ε
(t− τ)−], if ξ ∈ Γj .

(25.30)
Here τ is the coordinate of the point ξ, (t − τ)− = min(t − τ, 0), and the
last term in (25.30) is a particular solution of (25.25) on Γj with a bounded
support. There are 2N unknown constants in the formulas above, where N
is the total number of edges of the graph. Conditions (25.22)–(25.24) provide
2N linear equations for these constants. As is easy to see, the coefficients

for unknowns in all the equations have the form a(λ)ei
√

λ−λ0
ε s, where a(λ) is

analytic in λ < λ1 with a branch point of second order at λ = λ0, and s = 0 or
±lj (lj are the lengths of the finite channels). The exponential factors in the
coefficients appear when the formulas (25.29), (25.30) are substituted into GC
at the end point of the edge Γj where t = lj . We apply Cramer’s rule to solve
this system of 2N equations. This immediately provides all the statements
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of the theorem with D(λ, ε) being the determinant of the system. One only
needs to show that D �= 0 for λ < λ0. Note that the latter fact implies the
discreteness of the set Λ(ε) = {λ : D(λ, ε) = 0}.

Obviously, D = 0 if and only if the homogeneous problem (25.21)–(25.24)
has a non-trivial solution. Let λ < λ0. Then solutions ς of the problem (25.21)–
(25.24) decay at infinity, and

0 =
∫
Γ

[−ε2ς ′′ − (λ− λ0)ς]ςdγ

= −ε2Σv
〈
d

dt
ς(v), ς(v)

〉
|v +
∫
Γ

[ε2(ς ′)2 − (λ− λ0)ς2]dγ. (25.31)

It was shown in the proof of Lemma 1 that it is enough to consider only
diagonal matrices T when the terms under the sign Σv above with v ∈ V2
are evaluated. Since T is orthogonal when λ < λ0, the diagonal elements of
T are equal to ±1. Then (25.23) means that each component of the vector
ς(v) or its derivative is zero at the vertex. Hence, the terms in the sum above
with v ∈ V2 are equal to zero. They are zeros also for those v ∈ V1 where the
boundary condition in (25.22) is the Dirichlet or Neumann condition. If v ∈ V1
and B = ε ddt + a, a ≥ 0, these terms are nonpositive. Hence, relation (25.31)
implies that ς = 0 when λ < λ0.

Theorem 6 does not contain a statement concerning the structure of the
discrete set Λ(ε). This set becomes more and more dense when ε → 0. In
general, every point λ′ ∈(λ0, λ1) belongs to Λ(ε) for some sequence of ε =
εj(λ′) → 0. However, it is not an absolutely arbitrary discrete set, but the
set of zeros of a specific analytic function (25.28), and this fact provides the
following restriction on the set Λ(ε).

Lemma 2. For each bounded interval [α, λ1], each σ > 0 and some M , there
are cε−1 intervals Ij of length σ such that

|D(λ, ε)| > cσM when ε > 0, λ ∈ [α, λ1]\ ∪ Ij , c = c(α).

This lemma is a particular case of Lemma 15 from [MoVa07] (the set Γ0
is empty in the case considered here).

In order to construct the resolvent of the problem in Ωε, we need to rep-
resent the Green function gλ of the problem (25.25), (25.22)–(25.24) on the
graph Γ through the solutions of the scattering problems on the spider sub-
graphs of Γ .

We will call a function ψ = ψp(γ) a solution of the scattering problem on
the graph Γ if it satisfies the equation (25.21), conditions (25.22), and (25.23),
and has the following form at unbounded edges of the graph:

ψp(γ) = δp,je
−i

√
λ−λ0

ε t + ap,jei
√

λ−λ0
ε t, γ ∈ Γj , 1 ≤ p, j ≤ m, (25.32)
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where δp,j is the Kronecker symbol. This scattering solution corresponds to
the wave coming through the edge Γp. These scattering solutions on the graphs
were introduced in the previous section in the case when the graph corresponds
to a spider domain. In fact, only this simple case will be needed below.

Lemma 3. If the graph Γ corresponds to a spider domain Ωε, then the scat-
tering solution ψp(γ) exists and is defined uniquely for all λ < λ1, λ �= λ0. Any
function ς on Γ which satisfies equation (25.21) and GC condition (25.23) is
a linear combination of the scattering solutions ψp(γ).

Remark 5. For arbitrary graphs, one may have non-trivial solutions of the
homogeneous problem (25.21)–(25.24) supported on the set of bounded edges
of the graph. This occurs when λ ∈ Λ(ε). The set Λ(ε) is empty for spider
graphs.

Proof (of Lemma 3). If we take ap,j = tp,j , where tp,j are the scattering co-
efficients in the spider domain Ωε, then function (25.32) will satisfy (25.23)
(see the derivation of (25.19)). Hence, the scattering solutions ψp(γ) exist for
all λ < λ1, λ �= λ0, since the scattering coefficients are defined for those λ by
Theorem 3. If we put function (25.32) with ap,j = tp,j +hp,j into GC (25.23),
we immediately get that hp,j = 0 (see the proof of Theorem 5). Thus, scatter-
ing solutions are defined uniquely. The space of solutions of equation (25.21)
is 2m dimensional. The (m×2m)-dimensional matrix (Iv+Tv(λ), Iv+Tv(λ))
formed from coefficients in GC (25.23) has rank m. Hence, the solution space
of the problem (25.21), (25.23) is m dimensional. Obviously, functions ψp are
linearly independent on Γ . Thus, any solution of (25.21), (25.23) is a linear
combination of functions ψp.

Let Γj0 be the edge of Γ which contains the point ξ (see (25.25)). We cut
the graph Γ into simple graphs Γ (v) with one vertex v by cutting all the
bounded edges at some points ξj ∈ Γj . We will choose ξj0 = ξ. Let us denote
by Γ ′(v) the spider graph which is obtained by extending all the edges of Γ (v)
to infinity. Let ψp,v(γ) be the scattering solutions on the graph Γ ′(v).

Lemma 4. There exist functions

a = ap,v(λ, ε, ξ), λ < λ1, ε > 0, ξ ∈ Γj0 ,

which are continuous, bounded on each bounded set, and such that

gλ = Σp
ap,v(λ, ε, ξ)
D(λ, ε)

ψp,v(γ), γ ∈ Γ (v).

Proof. It follows from the previous lemma that gλ can be represented as a
linear combination of the scattering solutions:

gλ = Σpcp,vψp,v(γ), γ ∈ Γ (v).
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In order to find the coefficients cp,v, we note that gλ is equal to a combination
of two exponents on the edge Γp ⊂ Γ (v) with the coefficient of the incident
wave equal to cp,v:

gλ = cp,ve
i

√
λ−λ0

ε t + bp,ve−i
√

λ−λ0
ε t, γ ∈ Γp ⊂ Γ (v).

Now cp,v can be found by comparing the formula above and (25.27) at two
points of Γp.

25.5 Small ε Asymptotics for the Problem in Ωε

As everywhere above, the domain Ωε, considered below, can be bounded or
unbounded. Denote by Λ0 the union of eigenvalues of the operator (25.3) in
all the spider domains Ω′

v,ε associated to Ωε. These spider domains consist
of individual junctions and all the channels adjacent to this junction. The
channels are extended to infinity if they have a finite length. The set Λ0

does not depend on ε due to Theorem 4. Let us recall that Λ(ε) is the set
of eigenvalues of the one-dimensional problem (25.21)–(25.24) on the limiting
graph (see Theorem 6).

The eigenvalues of the operator Hε = −ε2Δ of the problem (25.1) which
are located on the interval (−∞, λ1) are exponentially close to the set Λ0 ∪
Λ(ε). In the process of proving this statement, we will get the asymptotic
approximation of the resolvent (Hε − λ)−1 as ε → 0. Namely, the following
theorem will be proved.

Let λ′ < λ1 and let Λν be an e
−να

ε -neighborhood of the set Λ0 ∪ Λ(ε).
Assume that the right-hand side of (25.3) has a compact support which is
separated from junctions, i.e., there exist τ, d > 0 such that the support of
f belongs to ∪Δj , where Δj is the part of the channel Cj,ε defined by the
inequalities τ ≤ t ≤ lj − τ if lj <∞, or τ ≤ t ≤ d if the channel is infinite.

Theorem 7. (1) There exists ν > 0 such that the eigenvalues μj,ε of the
operator Hε which belong to the interval (−∞, λ′) with an arbitrary λ′ < λ1

are located in an e
−να

ε -neighborhood of the set Λ0 ∪ Λ(ε). Here α = λ1 − λ′.
(2) Let the support of f belong to ∪Δj and let u = Rλf be the solution

of problem (25.3). Here Rλ is the truncated resolvent (25.9). Then for any
η > 0, there exist ν > 0 and ρ = ρ(η) > 0 such that u = Rλf has the
following asymptotic behavior in all the channels outside the η-neighborhood
of the support of f :

u = Rλf = (ĝλf0)ϕ0(
y

ε
) +O(e

−ρ
ε ), λ ∈ (−∞, λ′)\Λν , ε→ 0. (25.33)

Here
f0 = f0(γ) =

〈
f, ε−d/2ϕ0(

y

ε
)
〉
, γ ∈ Γ,
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and ĝλ is the integral operator on the graph Γ whose kernel is the Green
function gλ constructed in Theorem 6:

ĝλf0 =
∫
Γ

gλ(γ, ξ; ε)f0(ξ)dξ.

Remark 6. Below, we also will get the asymptotics of u = Rλf on the support
of f , as well as a more precise estimate of the remainder in (25.33).

Proof (of Theorem 7). Let

f1 = f1(x) = f − ε−d/2f0ϕ0(
y

ε
), x ∈ Ωε,

i.e., f0 = f0(γ) is the first Fourier coefficient of the expansion of f with respect
to the basis {ε−d/2ϕj(yε )}, and f1 is the sum of all the terms of the expansion
without the first one. We are going to show that u = Rλf has the following
form on the channels of Ωε:

u = Rλf = (ĝλf0)ϕ0(
y

ε
) + χR0

λf1 +O(e
−ρ
ε ), λ ∈ (−∞, λ′)\Λν , ε→ 0,

(25.34)
where ν, ρ > 0, χ ∈ C∞(Ωε) is a cut-off function such that χ = 0 on all
the junctions, χ = 1 outside of the ε-neighborhood of junctions, and function
R0
λf1 is defined by solving the following simple problem in the infinite cylinder.

Let f1,j be the restriction of f1 onto the channel Cj,ε. We extend the channel
Cj,ε to infinity (in both directions) and extend f1,j by zero. Let uj be the
outgoing solution of the equation

−ε2Δu− λu = f1,j

in the extended channel. Then R0
λf1 is defined as R0

λf1 = uj in the channel
Cj,ε. Obviously, χR0

λf1 can be considered as a function on Ωε.
The justification of (25.34) and the proof of Theorem 7 are based on an

appropriate choice of the parametrix (“almost inverse operator”):

Pλ : L2
τ,d → L2

loc(Ωε),

which is defined as follows:

Pλf = (Ĝλf0)ϕ0(
y

ε
) + (χR0

λf1)−ΣvχvR0
λ,v[χv[(ε

2Δ+ λ)(χR0
λf1)− f1]].

(25.35)
Here L2

τ,d is a subspace of L2(Ωε) which consists of functions supported on
∪Δj . Now we are going to define and study, successively, each of the terms in
the formula above. In particular, we need to show that

−(ε2Δ+ λ)Pλf = f +Qλf, Qλ : L2
τ,d → L2

τ,d, ||Qλ|| ≤ Ce
−ρ
ε . (25.36)

Operator Ĝλ is an integral operator with the kernel Gλ(x, z; ε), x, z ∈ Ωε,
which is defined as follows. We split Ωε into domains Ωv,ε by cutting all the
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finite channels Cj,ε using the cross sections t = tj . Let z ∈ Δj0 . Then we
choose tj0 to be equal to the coordinate t = t(z) of the point z. Other cross
sections are chosen with the only condition that τ < tj < lj − τ , i.e., the
cross section t = tj is strictly inside of Δj . Let Ω′

v,ε be the spider domain

which we get by extending all the finite channels of Ωv,ε to infinity. Let Ψ (ε)
p,v

be the scattering solutions of the problem in the spider domain Ω′
v,ε. The

small ε asymptotics of these solutions is given by Theorems 4 and 5. We
introduce the following functions Ψ̃ (ε)

p,v by modifying the remainder terms in
these asymptotics:

Ψ̃ (ε)
p,v = ψpϕ0(y/ε) + χvr(ε)p , (25.37)

where χv ∈ C∞(Ωε), χv = 1 on a τ -neighborhood of the junction, and χv = 0
outside of Ωv,ε. Then we define Gλ by the formula

Gλ(x, z; ε) = Σp
ap,v(λ, ε, ξ)
D(λ, ε)

Ψ̃ (ε)
p,v , x ∈ Ωv,ε, (25.38)

where ap,v, D are defined in Lemma 4, and ξ is the point on the graph Γ which
corresponds to z ∈ Δj0 , i.e., the point on the edge Γj0 where t = tj0 . Since
function Ψ (ε)

p,v satisfies the equation (ε2Δ+ λ)u = 0 on Ωv,ε, from Theorems 4
and 5 it follows that

−(ε2Δ+ λ)Ψ̃ (ε)
p,v = O(δ−1e−

ατ
ε ), ε→ 0, −∞ < λ < λ′ , x ∈ Ωv,ε,

where α = λ1 − λ′. We choose ν < τ
4 . Then δ > e−

ατ
4ε for λ ∈ (−∞, λ′)\ Λν ,

and

−(ε2Δ+ λ)Ψ̃ (ε)
p,v = O(e−

3ατ
4ε ), ε→ 0, λ ∈ (−∞, λ′)\ Λν , x ∈ Ωv,ε.

Since coefficients ap,v are bounded, Lemma 2 with σ = e−
ατ

4Mε implies that

−(ε2Δ+ λ)Gλ = O(e−
ατ
2ε ), ε→ 0, λ ∈ (−∞, λ′)\ Λν , x ∈ Ωv,ε. (25.39)

Relations (25.39) are valid on each domain Ωv,ε. Now we are going to
combine them and evaluate (ε2Δ+λ)Gλ for all x ∈ Ωε. From (25.37), (25.38),
and Lemma 4, it follows that the function

Gλ − gλ(γ, ξ; ε)ϕ0(
y

ε
)

is infinitely smooth in the channels of Ωε. Here γ is the point on Γ which
corresponds to x ∈ Ωε. Then from (25.39) it follows that

−(ε2Δ+λ)Gλ = δξ(γ)ϕ0(
y

ε
)+O(e−

ατ
2ε ), ε→ 0, λ ∈ (−∞, λ′)\ Λν , x ∈ Ωε.

(25.40)
As is easy to see, the remainder in (25.40) is zero in the region where ∇χv �= 0,
i.e., the support of the remainder belongs to ∪Δj .
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Now let us study the second and third terms on the left-hand side
of (25.35). Obviously,

−(ε2Δ+λ)(χR0
λf1) = χf1+h = f1+h, h = −2ε2∇χ·∇R0

λf1−ε2(Δχ)R0
λf1.

(25.41)
Here we used the fact that χ = 1 on the support of f1. Since f1 is orthogonal
to ϕ0(yε ), function R0

λf1 and all its derivatives decay exponentially in each
channel Cj,ε as r

ε →∞, where r is the distance from Δj. Hence,

h = O(e−
α(τ−ε)

ε ) = O(e−
ατ
ε ), ε→ 0, λ ∈ (−∞, λ′). (25.42)

The remainder terms will be parts of the operator Qλ, and we need the
kernel of this operator to be supported on ∪Δj . Unfortunately, h is supported
on ε-neighborhoods of the junctions. The last term in (25.35) is designed to
correct this. Since h is supported on the region where ∇χ �= 0, function h can
be represented as the sum h = Σvhv, where hv = χvh has estimate (25.42)
and is supported on the ε-neighborhood of the junction Jv,ε which corresponds
to the vertex v. Consider h̃ = ΣvχvR

0
λ,v[χvh], which is defined as follows. We

apply the resolvent R0
λ,v of the problem in the spider domain Ω′

v,ε to hv,
multiply the result by χv, and extend the product by zero on Ωε\Ωv,ε.

From (25.42) and Theorem 4 it follows that

|R0
λ,vhv| ≤ Cδ−1e−

ατ
ε ≤ Ce− ατ

2ε , ε→ 0, λ ∈ (−∞, λ′)\ Λν , (25.43)

if we choose ν < τ
2 , so that δ > e−

ατ
2ε . From standard a priori estimates for

the solutions of homogeneous equation (ε2Δ + λ)u = 0, it follows that esti-
mate (25.14) is valid also for all derivatives of Rλf , since this function satisfies
the homogeneous equation outside of the 2ε-neighborhood of the junction.
Then (25.43) holds for the derivatives of R0

λ,vhv. This allows us to obtain,
similarly to (25.41), that

−(ε2Δ+ λ)h̃ = h+ h1, h1 = O(e−
ατ
2ε ), ε→ 0, λ ∈ (−∞, λ′)\ Λν ,

(25.44)
where h1 is supported on the closure of the set ∇χv �= 0. This set belongs to
∪Δj . Finally, from (25.40), (25.41), (25.44) it follows that

−(ε2Δ+ λ)Pλf = f + g, g = O(e−
ρ
ε ), ε→ 0, λ ∈ (−∞, λ′)\ Λν ,

(25.45)
and g is supported on ∪Δj . One can easily check that g depends linearly on
f . Besides, one can specify the dependence on the norm of f in estimates
of all the remainders above. This will lead to (25.36) instead of (25.45). In
fact, (25.36) is valid when Qλ is considered as an operator in L2 or as an
operator in the space of continuous functions on ∪Δj .

We are now going to construct the solution u of problem (25.3) with f ∈
L2
τ,d. We look for u in the form u = Pλg with unknown g ∈ L2

τ,d. Obviously,
u satisfies the boundary conditions and appropriate conditions at infinity.
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Equation (25.3) in Ωε leads to g + Qλg = f . Since the norm of operator Qλ
is exponentially small, function g exists, is unique, and g = f + q, ||q|| ≤
Ce−

ρ
ε ||f ||, i.e.,

u = Pλ(f + q), ||q||L2
τ,d
≤ Ce− ρ

ε ||f ||L2
τ,d
, ε→ 0, λ ∈ (−∞, λ′)\ Λν .

This justifies (25.34) and (25.33). The first statement of Theorem 7 follows
from here. Namely, assume that an eigenvalue μ = μj,ε of the operator Hε
belongs to (−∞, λ′)\ Λν . Then the truncated resolvent Rλ (see (25.9)) has a
pole there (see Theorem 3). The residue of this pole is the orthogonal pro-
jection on the eigenspace of Hε. The pole of Rλf may disappear only if f
is orthogonal to the eigenspace which corresponds to the eigenvalue λ = μ.
Non-trivial solutions of the equation (Δ + λ)u = 0 in Ωε cannot be equal
to zero in a subdomain of Ωε. Thus, there is a function f ∈ L2

τ,d which is
not orthogonal to the eigenspace, and Rλf must have a pole at λ = μ. This
contradicts (25.34) and (25.33).

The following statement can be easily proved using Theorem 7 and reduc-
tion (25.13) of the scattering problem to problems (25.3), (25.4).

Theorem 8. For any interval [α, λ′), there exist ρ, ν > 0 such that scattering
solutions Ψp,ε(x) of the problem in Ωε have the following asymptotic behavior
on the channels of Ωε as ε→ 0:

Ψ(x) = ψp,ε(γ)ϕ0(
y

ε
) + r(ε)p (x),

where ψp(γ) = ψ
(ε)
p (γ) are the scattering solutions of the problem on the graph

Γ and
|r(ε)p (x)| ≤ Ce

−ρd(γ)
ε , λ ∈ [α, λ′)\ Λν .

Here γ = γ(x) is the point on Γ which is defined by the cross section of the
channel through the point x, and d(γ) is the distance between γ and the closest
vertex of the graph.

25.6 Eigenvalues Near the Threshold

In some cases, in particular when the parabolic problem is studied, the lower
part of the spectrum of the operatorHε is of particular importance. Theorem 7
provides a full description of the location of the eigenvalues. They are situated
in an exponentially small neighborhood of Λ0∪Λ(ε). The set Λ0 is determined
by the junctions. The points from Λ0 are ε-independent, non-negative and
may be located on either or both sides of λ0. One may have at most a finite
number of eigenvalues below λ0. The points of Λ(ε) are eigenvalues of the
one-dimensional problem (25.21)–(25.24) on the limiting graph, they cannot
occur below λ0, since D �= 0 there (see Theorem 6).
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We are going to study the limiting behavior, as ε→ 0, of points from the
set Λ(ε) located in an O(ε2) neighborhood of λ0.

We will assume that Ωε has at least one bounded channel (for example,
Ωε is bounded). The opposite case is studied in Theorem 4. We also assume
that λ = λ0 +O(ε2). Then the eigenvalues of the problem (25.21)–(25.24) will
depend on the form of the GC (25.23) at λ = λ0. Let us put λ = λ0 + με2

in (25.21)–(25.24). Then this problem takes the form

− d
2

dt2
ς = μς on Γ, (25.46)

Bς = 0 at v ∈ V1, (25.47)

i[Iv+Tv(λ0+με2)]
d

dt
ς(v)(t)−μ[Iv−Tv(λ0+με2)]ς(v)(t) = 0, t = 0, v ∈ V2,

(25.48)

ς = aje
iμt, γ ∈ Γj , 1 ≤ j ≤ m, t >> 1. (25.49)

The last condition is not needed if Ωε is bounded (m = 0).

with ε = 0 has the form

Pς(v)(0) = 0, P⊥ d

dt
ς(v)(0) = 0, v ∈ V2, (25.50)

where P, P⊥ are projections onto eigenspaces of matrix Tv(λ0) with the eigen-
values ∓1, respectively. Let k be the dimension of the operator P , and d− k
be the dimension of the operator P⊥, where d = d(v) is the size of the vector
ς(v). Then (25.50) imposes k Dirichlet conditions and d− k Neumann condi-
tions on the components of vector ς(v) written in the eigenbasis of the matrix
Tv(λ0). Note that the standard Kirchhoff conditions (ς is continues on Γ , a
linear combination of derivatives is zero at each vertex) has the same nature,
and k = d− 1 in this case.

Problem (25.46)–(25.49) with ε = 0 has a discrete spectrum {μj}, j ≥ 1,
and the same problem with ε > 0 is its analytic perturbation. Thus, the
following statement is valid.

Theorem 9. If eigenvalues {μj} are simple, then eigenvalues {μj(ε)} of prob-
lem (25.46)–(25.49) are analytic in ε:

μj(ε) =
∑
n≥0

μj,nε
n, μj,0 = μj . (25.51)

Remark 7. 1. This statement implies that eigenvalues λ ∈ Λ(ε) in an O(ε2)-
neighborhood of λ0 have the form

λ = λj(ε) = λ0 + ε2
∑
n≥0

μj,nε
n. (25.52)

Since matrix Tv(λ0) is orthogonal and its eigenvalues are±1, the GC (25.48)
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2. The assumption on simplicity of μj often can be omitted. For exam-
ple, (25.51), (25.52) remain valid without this assumption if k = d (the limiting
problem is the Dirichlet problem). In the latter case one may have multiple
eigenvalues (for example, when the graph has edges of multiple lengths), but
the problem with ε = 0 is split into separate problems on individual edges.

Theorem 9 makes it important to specify the value of k in the condi-
tion (25.50). This value depends essentially on the type of the boundary condi-
tions at ∂Ωε and on whether λ = λ0 is a pole of the truncated resolvent (25.10)
or not.

Definition 3. A ground state of the operator Hε in a domain Ωε at λ = λ0 is
the function ψ0 = ψ0 (x), which is bounded, strictly positive inside Ωε, satisfies
the equation (−Δ− λ0)ψ0 = 0 in Ωε, and the boundary condition on ∂Ωε,
and has the following asymptotic behavior at infinity:

ψ0 (x) = ϕ0

(y
ε

)
[ρj + o (1)], x ∈ Cj , |x| → +∞, (25.53)

where ρj > 0 and ϕ0 is the ground state of the operator in the cross sections
of the channels.

Obviously, if the Neumann boundary condition is imposed on ∂Ωε, then
λ0 = 0, and the ground state at λ = 0 exists and equal to a constant. It was
shown in [MoVa07], [MoVa08] that the ground state at λ = λ0 does not exist
for generic domains Ωε in the case of other boundary conditions on ∂Ωε. In
particular, it does not exist if there are eigenvalues of Hε below λ0, or if the
truncated resolvent does not have a pole at λ = λ0. The following result was
proved in [MoVa07] and [MoVa08].

Theorem 10. (1) The ground state at λ = λ0 implies k = d − 1. Thus, the
eigenvalues μj(ε), ε→ 0, converge to the eigenvalues of the Kirchhoff problem
in the case of the Neumann condition on ∂Ωε (Ωε is arbitrary) and in the case
of other boundary conditions on ∂Ωε for special, nongeneric Ωε.

(2) If the Dirichlet or Robin condition is imposed on ∂Ωε and the truncated
resolvent does not have a pole at λ = λ0 (this is a generic condition on Ωε),
then k = d and μj(ε), ε → 0, converge to the eigenvalues of the Dirichlet
problem.

Other possible (nongeneric) GC at λ = λ0 are given by (25.50).
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26.1 Introduction

This chapter is devoted to the homogenization of a stationary convection–
diffusion model problem in a thin rod structure. More precisely, we study
the asymptotic behavior of solutions to a boundary value problem for a
convection–diffusion equation defined in a thin cylinder that is the union of
two nonintersecting cylinders with a junction at the origin. We suppose that
in each of these cylinders the coefficients are rapidly oscillating functions that
are periodic in the axial direction, and that the microstructure period is of the
same order as the cylinder diameter. On the lateral boundary of the cylinder
we assume the Neumann boundary condition, while at the cylinder bases the
Dirichlet boundary conditions are posed.

Similar problems for the elasticity system have been intensively studied in
the existing literature. We quote here the works [KoPa92], [MuSi99], [Naz82],
[Naz99], [TuAg86], [TrVi87], [Ve95]. The contact problem of two heteroge-
neous bars was considered in [Pa94-I], [Pa96-II], [Past02]. Elliptic equations
in divergence form have been addressed, for example, in [BaPa89] and [Pa05].

diffusion equation the asymptotic behavior of solutions depends crucially on
the direction of what is called the effective convection, which is introduced in
Section 26.2. In this chapter we only consider the case when in each of the
two cylinders (being the constituents of the rod) the effective convection is
directed from the end of the cylinder towards the junction.

The asymptotic expansion of a solution includes the interior expansion, the
boundary layers in the neighborhoods of the cylinder ends, and the interior
boundary layer in the vicinity of the junction. Note that the leading term of the
asymptotics is described in terms of a pair of first order ordinary differential
equations. The construction of the interior expansions follows the classical
scheme. The analysis of boundary layers in the neighborhoods of the cylinder
ends relies on the results obtained in [PaPi09]. In order to build the interior
boundary layer we study a qualitative problem for the convection–diffusion
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In contrast to the divergence-form operators, in the case of the convection-
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equation in an infinite cylinder. This is done in Section 26.7. As far as the
authors are aware, no one has studied a convection–diffusion equation with
first order terms in an infinite cylinder. In the case under consideration, when
in each of the two cylinders the effective convection is directed from the end of
the cylinder towards the junction, we prove the existence of a solution for such
a problem and discuss its qualitative properties. In other cases the situation
is much more difficult (especially in the case when effective convections occur
in opposite directions) and outside the scope of the present work.

26.2 Problem Statement

Let Q be a bounded C2,α domain in (d − 1)-dimensional Euclidean space
Rd−1 with points x′ = (x2, ..., xd). Denote Gε = [−1, 1] × (εQ) ⊂ Rd a thin
rod with the lateral boundary Γε = [−1, 1] × ∂(εQ);x = (x1, x

′). We study
the homogenization of a scalar elliptic equation with periodically oscillating
coefficients⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Aεuε ≡ −div
(
aε(x)∇uε

)
− 1
ε

(
bε(x),∇uε

)
=

1
ε
f(x1), x ∈ Gε,

Bεuε ≡ ∂uε

∂naε

= g(x1), x ∈ Γε,

uε(−1, x′) = ϕ−(x′

ε

)
, uε(1, x′) = ϕ+(x′

ε

)
, x′ ∈ εQ,

(26.1)

where the matrix-valued function aε(x) and the vector field bε(x) are given by
aε(x) = a(x/ε), bε(x) = b(x/ε), and ε > 0 is a small parameter. In (26.1)
(·, ·) stands for the standard scalar product in Rd; ∂uε/∂naε = (aε∇uε, n) is
the co-normal derivative of uε, and n is an external unit normal. Throughout
the chapter we denote

G = (−∞,+∞)×Q, Γ = (−∞,+∞)× ∂Q;

Gβα = (α, β)×Q, −∞ ≤ α ≤ β ≤ +∞.
We suppose the following conditions to hold:

(H1) The coefficients aij(y) ∈ C1,α(G) and bj(y) ∈ Cα(G) are periodic
outside some compact set K � G1

−1. More precisely,

aij(y) =

⎧⎪⎨⎪⎩
a+
ij(y), y1 > 1,
ãij(y), |y1| ≤ 1,
a−
ij(y), y1 < −1;

b(y) =

⎧⎪⎨⎪⎩
b+j (y), y1 > 1,

b̃j(y), |y1| ≤ 1,
b−j (y), y1 < −1;

where a±(y) and b±(y) are periodic in y1. Without loss of generality, we
assume that the period is equal to 1.

(H2) The matrices a±(y) are symmetric.
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(H3) We assume that a±(y) satisfy the uniform ellipticity condition; that is,
there exists a positive constant Λ such that, for almost all x ∈ Rd,

Λ |ξ|2 ≤
d∑

i,j=1

a±
ij(y) ξi ξj , ∀ξ ∈ Rd. (26.2)

(H4) ϕ±(y′) ∈ H1/2(Q).
(H5) Functions f(x1) and g(x1) are supposed to be smooth, namely, f(x1) ∈
C2(Gε) and g(x1) ∈ C2(Γε).

The goal of this work is to study the asymptotic behavior of uε(x), as
ε→ 0. As was noted in the Introduction, in contrast to the case of an operator
in divergence form, the situation turns out to depend crucially on the signs
of the effective fluxes b̄±1 , the constants which are defined in terms of the
kernel of the adjoint periodic operators and coefficients of the equation. When
constructing boundary layer functions, we consider only one case: b̄+1 < 0,
b̄−1 > 0.

26.3 Formal Asymptotic Expansion

In the sequel we use the following notation:

G+
ε = {x = (x1, x

′) ∈ Gε : x1 > ε}, G−
ε = {x = (x1, x

′) ∈ Gε : x1 < −ε};
A±
y v ≡ −divy (a±(y)∇y v)− (b±(y),∇yv), y ∈ Y ;

B±
y v ≡

∂v

∂na±
=

d∑
i,j=1

a±
ij(y) ∂yjv ni, y ∈ Y,

where Y = S1 × Q, with S1 a unit circle, denotes the cell of periodicity. In
what follows we identify y1-periodic functions with functions defined on Y .
Notice that ∂Y = S1 × ∂Q.

In each half-cylinder G+
ε and G−

ε the inner asymptotic expansion of a
solution to equation (26.1) has the form (see, for example, [BaPa89], [BLP78])

u±
∞ = v±

0 (x1) + ε
[
N±

1

(x
ε

)
(v±

0 )′(x1) + v±
1 (x1) + q±

1

(x
ε

)
g(x1)

]
+ ε2

[
N±

2

(x
ε

)
(v±

0 )′′(x1) +N±
1

(x
ε

)
(v±

1 )′(x1) + v±
2 (x1) + q±

2

(x
ε

)
g′(x1)

]
.

(26.3)
The leading term of the asymptotics, v±

0 , satisfies a first order ordinary dif-
ferential equation

b̄±1 (v±
0 )′(x1) = f(x1) + g(x1)

∫
∂Y

p±(y)dσy, (26.4)

where
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b̄±1 =
∫
Y

(
a±
i1(y)∂yip

±(y)− b±1 (y)p±(y)
)
dy

is called the effective axial drift; and p±(y) belong to the kernels of adjoint
periodic operators defined on Y :⎧⎨⎩

−div (a±(y)∇ p±) + div (b± p±) = 0, y ∈ Y,
∂p±

∂na±
− (b±, n) p± = 0, y ∈ ∂Y.

Throughout the chapter we will assume that

(H6) b̄−1 > 0 and b̄+1 < 0.

Notice that since f(x1), g(x1) ∈ C2([−1, 1]), then v+0 (x1) ∈ C3(ε, 1), v−
0 (x1) ∈

C3(−1,−ε).
One can see that necessarily the functions N±

1 and q±
1 satisfy the problems{

A±
y N

±
1 = ∂yia

±
i1 + b±1 + b̄±1 , y ∈ Y,

B±
y N

±
1 = −a±

i1 ni, y ∈ ∂Y ;

⎧⎨⎩ A±
y q

±
1 = −

∫
∂Y

p±dσy, y ∈ Y,
B±
y q

±
1 = 1, y ∈ ∂Y.

(26.5)
Obviously, by the definition of b̄±1 , the compatibility conditions for (26.5)
are satisfied; thus, these problems are uniquely (up to an additive constant)
solvable. Since we assumed that aij(y) ∈ C1,α(G) and bj(y) ∈ Cα(G), then
N±

1 (y) and q±
1 (y) belong to C2,α(Y ) (see, for example, [GiTr98], [LaUr68]).

The equation for v±
1 reads

b̄±1 (v±
1 )′(x1) = h±

2 (v±
0 )′′(x1) + q±

1 g
′(x1), (26.6)

where h±
2 and q±

1 are constants given by the following expressions:

h±
2 =

∫
Y

(
a±
11 p

± − a±
i1N

±
1 (y)∂yip

± + b±1 N
±
1 p

± + a±
1j ∂yjN

±
1 p

±) dy;
q±
1 =

∫
Y

(
− a±

i1 q
±
1 ∂yi

p± + b±1 q
±
1 p

± + a±
1j ∂yj

q±
1 p

±) dy.
Let us note that v±

1 (x1), as a solution of (26.6), has continuous derivatives in
Y up to the second order.

One can see that N±
2 and q±

2 satisfy the problems{
A±
y N

±
2 = a±

11 + ∂yi(a
±
i1N

±
1 ) + b±1 N

±
1 + a±

1j∂yjN
±
1 − h±

2 , y ∈ Y,
B±
y N

±
2 = −a±

i1N
±
1 ni, y ∈ ∂Y ;

(26.7){
A±
y q

±
2 = ∂yi

(a±
i1 q

±
1 ) + b±1 q

±
1 + a±

1j ∂yj
q±
1 − q±

1 , y ∈ Y,
B±
y q

±
1 = −a±

i1 q
±
1 ni, y ∈ ∂Y.

(26.8)
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The compatibility conditions are satisfied and problems (26.7)–(26.8) are
uniquely solvable. The smoothness of the coefficients and the properties of
the functions N±

1 , q±
1 imply that N±

2 (y), q±2 (y) ∈ C2,α(Y ).
The equation for v±

2 (x1) is the following:

b̄±1 (v±
2 )′(x1) = h±

3 (v±
0 )(3)(x1) + h±

2 (v±
1 )′′(x1) + q±

2 g
′′(x1), (26.9)

where

h±
3 =

∫
Y

(
a±
11N

±
1 p

± − a±
i1N

±
2 ∂yip

± + b±1 N
±
2 p

± + a±
1j∂yjN

±
2 p

±) dy;
q±
2 =

∫
Y

(
a±
11 q

±
1 p

± − a±
i1q

±
2 ∂yi

p± + b±1 q
±
2 p

± + a±
1j∂yj

q±
2 p

±) dy.
The function v±

2 as a solution of (26.9) is a C1(Y ) function.
Note that the infinite number of terms in series (26.3) can be constructed.

Interested readers can find in [Pa05] the description of the general method for
such a construction together with some applications and examples.

26.4 Boundary Layers Near the Rod Ends

The asymptotic series (26.3) does not satisfy the boundary conditions on the
bases of the rod, which is why we introduce the boundary layer functions in
the neighborhoods of S±1 = {x ∈ Gε : x1 = ±1, x′ ∈ εQ}:

v±
bl(x) ≡

[
w±

0

(x1 ∓ 1
ε

,
x′

ε

)
− ŵ±

0

]
+ ε
[
w±

1

(x1 ∓ 1
ε

,
x′

ε

)
− ŵ±

1

]
+ ε2

[
w±

2

(x1 ∓ 1
ε

,
x′

ε

)
− ŵ±

2

]
.

(26.10)

Here w±
0 (y) are the solutions of homogeneous problems in semi-infinite cylin-

ders G0
−∞ and G+∞

0 , respectively,⎧⎪⎨⎪⎩
A+
y w

+
0 (y) = 0, y ∈ G0

−∞,

B+
y w

+
0 = 0, y ∈ Γ 0

−∞,

w+
0 (0, y′) = ϕ+(y′),

⎧⎪⎨⎪⎩
A−
y w

−
0 (y) = 0, y ∈ G+∞

0 ,

B−
y w

−
0 = 0, y ∈ Γ+∞

0 ,

w−
0 (0, y′) = ϕ−(y′).

(26.11)
As was proved in [PaPi09] (see Theorem 5.1), under assumptions (H1)−(H6),
problems (26.11) possess unique solutions stabilizing to constants ŵ±

0 at an
exponential rate, as y1 → ∓∞. As boundary conditions for v±

0 we choose
v±
0 (±1) = ŵ±

0 .
The functions w±

1 satisfy the following problems:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A+
y w

+
1 (y) = 0, y ∈ G0

−∞,

B+
y w

+
1 = 0, y ∈ Γ 0

−∞,

w+
1 (0, y′) = −N+

1 (δ, y′) (v+0 )′(1)

−q+1 (δ, y′) g(1),

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A−
y w

−
1 (y) = 0, y ∈ G+∞

0 ,

B−
y w

−
1 = 0, y ∈ Γ+∞

0 ,

w−
1 (0, y′) = −N−

1 (−δ, y′) (v−
0 )′(−1)

−q−1 (−δ, y′) g(−1),
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for some fixed δ ∈ [0, 1) (δ is a fractional part of ε−1). Taking into account that
b̄+1 < 0, b̄−1 > 0, one can see that w±

1 stabilize to uniquely defined constants
which we denote by ŵ±

1 (see [PaPi09]). Then we take the constant ŵ±
1 as

boundary conditions for v±
1 (x1) as x1 = ±1: v±

1 (±1) = ŵ±
1 .

Turning back to (26.10), w±
2 solve the problems⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A±
y w

±
2 = 0, y ∈ G0

−∞ (y ∈ G+∞
0 ),

B±
y w

±
2 = 0, y ∈ Γ 0

−∞ (y ∈ Γ+∞
0 ),

w±
2 (0, y′) = −N±

2 (±δ, y′) (v±
0 )′′(±1)

−N±
1 (±δ, y′) (v±

1 )′(±1)− q±
2 (±δ, y′) g′(±1).

(26.12)

w±
2 tend to constants ŵ±

2 , as y1 → ∓∞. As before, the existence and unique-
ness of solutions and the property of the exponential stabilization to constants
are ensured by Theorem 5.1 in [PaPi09]. Now we can choose a boundary con-
dition for the functions v±

2 as x1 = ±1: v±
2 (1) = ŵ±

2 .

26.5 Boundary Layer in the Middle of the Rod

Before constructing the boundary layer functions in the middle of the rod,
let us extend v+0 (x1) (keeping the same notation) to (−∞, ε) as a solution of
equation (26.4) satisfying the boundary condition v+0 (1) = ŵ+

0 . In the same
way we can extend v+1 , v+2 to (−∞, ε), and v−

0 , v−
1 , v−

2 to (−ε,+∞) as solutions
to corresponding ordinary differential equations. Periodic in y1 functions N±

k

and q±
k , k = 1, 2, 3, we regard as defined everywhere in G = R×Q.

Obviously, it suffices to match the formal asymptotic series u+
∞, defined

by (26.3) in G+
∞, with zero in the vicinity of Sε0 = {x ∈ Gε : x1 = 0}. Then,

in the same way we can match u−
∞ with zero, and, summing up the obtained

expressions, arrive at the final boundary layer corrector in the neighborhood
of Sε0 . In order to do this, we are looking for a “corrected” solution in the
form

v±
ε (x) = χ±

0 (y) v±
0 (x1) + εN±

1 (y)φ±(y) (v±
0 )′(x1) + ε χ±

1,1(y) (v±
0 )′(x1)

+ ε q±
1 (y)φ±(y)g(x1) + ε χ±

1,2 g(x1) + ε χ±
1 (y) v±

1 (x1)

+ ε2N±
2 (y)φ±(y) (v±

0 )′′(x1) + ε2 χ±
2,1(y) (v±

0 )′′(x1)

+ ε2N±
1 (y)φ±(y) (v±

1 )′(x1) + ε2 χ±
2,2(y) (v±

1 )′(x1)

+ ε2 q±
2 (y)φ±(y)g′(x1) + ε2 χ±

2,3(y) g
′(x1) + ε2 χ±

2 (y) v±
2 (x1), y = x/ε,

(26.13)
where the functions χ±

1 (y), χ±
1,1(y), χ

±
1,2(y), χ

±
2,1(y), χ

±
2,2(y), χ

±
2,3(y), and

χ±
2 (y) are to be determined; φ+(y) = φ+(y1) is a smooth cut-off function

such that φ+(y) = 0 if y1 < −1 and φ+(y) = 1 if y1 > 1, φ− = 1− φ+.
Substituting (26.13) into (26.1) and collecting power-like terms related to

different powers of ε, one gets equations for the unknown functions. Due to
lack of space, we do not produce the calculations here.
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Ay χ

±
m = 0, y ∈ G,

By χ
±
m = 0, y ∈ Γ, m = 0, 1, 2.

(26.14)

⎧⎪⎨⎪⎩
Ayχ

±
1,1 = −Ay(N±

1 (y)φ±(y)) + a1j(y)∂yj
χ±

0 (y)

+ ∂yi

(
ai1χ

±
0 (y)
)

+ b1(y)χ±
0 (y)− b̄±1 φ±(y), y ∈ G;

Byχ
±
1,1 = −ai1 χ±

0 ni − aij ∂yj
(N±

1 φ
±)ni, y ∈ Γ ;

(26.15)

⎧⎪⎨⎪⎩
Ayχ

±
1,2 = −Ay

(
q±
1 (y)φ±(y)

)
− φ±(y)

∫
∂Y

p±(y) dσy, y ∈ G,

Byχ
±
1,2 = −aij ∂yj

(
q±
1 (y)φ±(y)

)
ni + φ±(y), y ∈ Γ ;

(26.16)

Problems (26.14)–(26.16), stated in the infinite cylinder G, were derived by
formal calculations which, of course, do not imply the solvability of these
problems. Theorem 2, proved in Section 26.7, guarantees the existence of
solutions to problems (26.14)–(26.16) in proper classes and, moreover, gives an
additional qualitative information about the solutions. Indeed, we can choose
χ±
m, m = 0, 1, 2, such that

χ+
m −→

y1→+∞
1, χ+

m −→
y1→−∞

0;

χ−
m −→

y1→+∞
0, χ−

m −→
y1→−∞

1, m = 0, 1, 2. (26.17)

Such a choice of χ±
0 and definitions of N±

1 (y) and φ±(y) ensure the existence
of solutions χ±

1,1 of problem (26.15), which stabilize to the constants at infinity.
For the functions χ±

1,1 we assign zeros at infinity: χ±
1,1 → 0, y1 → ±∞.

Similarly, taking into account (26.5) and the definition of φ±, one can
see that problems (26.16) are solvable. We also choose zeros as constants at
infinity for χ±

1,2: χ±
1,2 → 0, y1 → ±∞.

In much the same way, we see that there exist χ±
2,1, χ

±
2,2, χ

±
2,3 stabilizing

to zero, as y1 → ±∞, which solve the following problems:⎧⎪⎨⎪⎩
Ay χ

+
2,1 = −Ay(N+

2 φ
+) + a11 χ

+
0 + a1j ∂yj

(N+
1 φ

+) + ∂yi
(ai1N+

1 φ
+)

+ b1N
+
1 φ

+ + a1j ∂yj
χ+

1,1 + ∂yi
(ai1 χ+

1,1) + b1 χ+
1,1 − h+

2 φ
+, y ∈ G,

By χ
+
2,1 = −By (N+

2 φ
+)− ai1 ni χ+

1,1 − ai1 niN+
1 φ

+, y ∈ Γ ;
(26.18)⎧⎪⎨⎪⎩

Ay χ
+
2,2 = −Ay(N+

1 φ
+) + a1j ∂yjχ

+
1

+ ∂yi(ai1χ
+
1 ) + b1 χ+

1 − b̄+1 φ+, y ∈ G,

By χ
+
22 = −By(N+

1 φ
+)− ai1 ni χ+

1 , y ∈ Γ ;

(26.19)

⎧⎪⎪⎨⎪⎪⎩
Ay χ

+
2,3 = −Ay(q+2 φ+) + a1j ∂yj (q

+
1 φ

+) + ∂yi(ai1 q
+
1 φ

+) + b1 q+1 φ
+

+ a1j ∂yjχ
+
1,2 + ∂yi(ai1 χ

+
1,2) + b1 χ+

1,2 − q+1 φ+, y ∈ G,

By χ
+
2,3 = −By (q+2 φ

+)− ai1 ni χ+
1,2 − ai1 ni q+1 φ+, y ∈ Γ.

(26.20)
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Finally, taking into account the constructed inner formal asymptotic ex-
pansion and boundary layer correctors in the neighborhoods of S±1 and S0,
we arrive at the asymptotic solution of problem (26.1):

uε∞(x) ≡ v+ε (x) + v+bl(x) + v−
ε (x) + v−

bl(x), (26.21)

where v+ε , v−
ε , and v±

bl are defined by (26.13) and (26.10).

Remark 1. Adding the boundary layer functions v±
bl to the inner expansions

u±
∞ makes it possible to satisfy the boundary conditions on the bases of the

rod Gε with an accuracy up to the third order in ε. Representing (26.21) as
the sum of the inner expansions and the boundary layer functions

uε∞ = u+
∞(x) + (v+ε (x)− u+

∞(x)) + v+bl(x)

+ u−
∞(x) + (v−

ε (x)− u−
∞(x)) + v−

bl(x),

we make (v±
ε −u±

∞) exponentially small (but not vanishing) on Sε±, as well as
v+bl on Sε−1 and v−

bl on Sε+1. In order to satisfy exactly the boundary conditions,
one can replace (26.21) with

ũε∞ = u+
∞(x) + (v+ε (x)− u+

∞(x))φ1(x) + v+bl(x)φ
+
1 (x)

+ u−
∞(x) + (v−

ε (x)− u−
∞(x)) φ1(x) + v−

bl(x)φ
−
1 (x),

where φ1(x) = 1 if |x1| < 1/3 and φ1(x) = 0 otherwise;

φ+
1 (x) =

{
1, x1 > 2/3,

0, x1 < 1/3.
φ−

1 (x) =

{
1, x1 < −2/3,

0, x1 > −1/3.

Substituting ũε∞ into (26.1), it is straightforward to check that the presence
of the cut-off functions results in the appearance of additional exponentially
small (with respect to ε−1) terms on the right-hand side. Later on we will prove
a priori estimates (26.23) and (26.24) which ensure that the exponentially
small perturbation of the right-hand side leads to the exponentially small
perturbation of the solution, and, thus, is negligible in any polynomial in
ε expansion. To simplify the notation, we deal with (26.21) neglecting the
discrepancies on Sε±1 which are exponentially small with respect to ε−1.

26.6 Justification of the Procedure

Theorem 1. Let the conditions (H1)–(H6) hold true. Then the approximate
solution uε∞ given by formula (26.21) satisfies the estimates

‖∇uε∞ −∇uε‖L2(Gε) ≤ C ε3/2 ε(d−1)/2,

‖uε∞ − uε‖L2(Gε) ≤ C ε3/2 ε(d−1)/2,
(26.22)

where uε(x) is the exact solution to problem (26.1).
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Proof. First we obtain an a priori estimate for a solution to the problem⎧⎪⎨⎪⎩
Aεuε = fε(x), x ∈ Gε,
Bεuε = gε(x), x ∈ Γε,
uε(±1, x′) = 0, x′ ∈ εQ

in terms of fε(x) and gε(x) (for the moment we do not specify the particular
structure of these functions). While proving Theorem 2 in Section 26.7, we
will show that the following estimates hold true:

‖∇uε‖L2(Gε) ≤ C
√
ε ‖fε‖L2(Gε) + C

√
ε ‖gε‖L2(Γε). (26.23)

Making use of the Friedrichs inequality for the function uε in Gε, we obtain

‖uε‖L2(Gε) ≤ C
√
ε ‖fε‖L2(Gε) + C

√
ε ‖gε‖L2(Γε). (26.24)

Estimation of the L2(Gε)-norm of Aε
(
(v+ε + v+bl) + (v−

ε + v−
bl) − uε

)
and the

L2(Γε)-norm of Bε
(
(v+ε +v+bl)+(v−

ε +v−
bl)−uε

)
will complete the justification

procedure. Due to lack of space, we have to drop these estimates and leave
them to the reader.∥∥Aε((v+ε + v+bl) + (v−

ε + v−
bl)− uε

)∥∥
L2(Gε) ≤ C ε ε

(d−1)/2;∥∥Bε((v+ε + v+bl) + (v−
ε + v−

bl)− uε
)∥∥
L2(Γε) ≤ C ε

2 ε(d−2)/2; (26.25)

Taking into account (26.23)–(26.25) we get (26.22).

Remark 2. The estimates (26.23)–(26.24) imply that we can take f(x1) ∈
L2(Gε) and g(x1) ∈ L2(Γε).

26.7 Existence of a Solution in an Infinite Cylinder

We consider the following boundary value problem:⎧⎨⎩
A# u ≡ −div (a(x)∇u(x))− (b(x),∇u(x)) = f(x), x ∈ G,

B# u ≡
∂ u

∂ na
= g(x), x ∈ Γ.

(26.26)

We assume that
(H5)′ The functions f ∈ C(Ḡ) and g ∈ C(Γ ) are such that

‖f‖L2(Gn+1
n ) ≤ Ce−γ1n, ‖g‖Γ 2(Γn+1

n ) ≤ Ce−γ1n, γ1 > 0, n ∈ R.

The goal of this section is to show that in the case b̄+1 < 0, b̄−1 > 0, problem
(26.26) possesses a bounded (in a proper sense) solution, which stabilizes to
constants, as |x1| → ∞.
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Definition 1. A weak solution u(x) of problem (26.26) is said to be bounded
if

‖u‖L2(Gn+1
n ) ≤ C,

with a constant C independent of n.

The following theorem contains the main result of the section.

Theorem 2. Let conditions (H1) − (H3), (H5)′, (H6) be fulfilled. Then for
any constants K+

∞ and K−
∞ there exists a bounded solution u(x) of problem

(26.26) such that it converges at the exponential rate to these constants, as
x1 → ±∞,

‖u−K−
∞‖L2(G−n

−∞) ≤ C (1 +K−
∞) e−γ n,

‖u−K+
∞‖L2(G+∞

n ) ≤ C (1 +K+
∞) e−γ n, γ > 0,

and the following estimates hold:

‖u‖L2(Gn+1
n ) ≤ C

(
‖(1 +

√
|x1|) f‖L2(G) + ‖(1 +

√
|x1|) g‖L2(Γ )

)
;

‖∇u‖L2(G) ≤ C
(
‖(1 +

√
|x1|) f‖L2(G) + ‖(1 +

√
|x1|) g‖L2(Γ )

)
.

Proof. Let us consider the following sequence of auxiliary boundary value
problems in a growing family of finite cylinders:⎧⎪⎨⎪⎩

A# uk = f(x), x ∈ Gk−k,
B# uk = g(x), x ∈ Γ k−k,
uk(−k, x′) = uk(k, x′) = 0, x′ ∈ Q.

(26.27)

Without loss of generality, we assume that f(x) > 0 and g(x) > 0. Moreover,
we assume that the functions f and g are equal to zero in the half-cylinder
G0

−∞; that is, supp f, supp g ⊂ G+∞
0 . The case when the supports of f and

g belong to G0
−∞ can be considered similarly. Due to the regularity assump-

tions (H1), (H5)′, the maximum principle and the boundary point lemma are
valid (see, e.g., [GiTr98]), and, consequently, a negative minimum cannot be
attended in the internal part of Gk−k and its lateral boundary; that is, uk ≥ 0
in Gk−k.

In the cylinder G−1
−k the function uk(x) is a solution of a homogeneous

equation. Since uk(−k, x′) = 0 and b̄−1 > 0, we have the following estimate:

uk(x) ≤ ‖uk‖L∞(S−1) e
γ x1 , x ∈ G−1

−k, γ > 0.

The proof of this fact can be found in [PaPi09], Section 5, Theorem 5.5.
For the nonnegative function uk(x), the Harnack inequality is valid in the

fixed domain G0
−1 with a constant α which depends only on d, |Q|, and Λ;

that is,
uk(x) ≤ α min

G0
−1

uk(x) eγ x1 .
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Obviously, there exists ξ > 1, independent of k, such that

uk(−ξ, x′) <
1
2

min
G0

−1

uk(x). (26.28)

In Gk−ξ, due to the linearity of the problem, we can represent uk as a sum
vk + wk, where vk is a solution of the homogeneous equation with nonzero
Dirichlet boundary condition vk(−ξ, x′) = uk(−ξ, x′); and wk is a solution of
the nonhomogeneous equation with functions f and g on the right-hand side
and homogeneous Dirichlet boundary conditions on the bases. In view of the
maximum principle and (26.28) we obtain an estimate for vk(x),

vk(x) ≤
1
2

min
G0

−1

uk(x), x ∈ Gk−ξ. (26.29)

One can prove (see [PaPi09], Lemma 7.2, estimates (7.10), (7.11)) that the
following estimate for wk holds:

‖wk‖L2(GN+1
N

) ≤ C ‖(1 +
√
x1) f‖L2(G+∞

0 ) +C ‖(1 +
√
x1) g‖L2(Γ+∞

0 ). (26.30)

In this way, taking into account (26.29) and (26.30), one can see that

min
G0

−1

uk(x) ≤ ‖uk‖L2(G0
−1)

≤ 1
2

min
G0

−1

uk(x) + ‖wk‖L2(G0
−1)
.

It follows from the last inequality that

min
G0

−1

uk(x) ≤ C ‖(1 +
√
x1) f‖L2(G+∞

0 ) + C ‖(1 +
√
x1) g‖L2(Γ+∞

0 ). (26.31)

In view of the Harnack inequality and (26.31), uk(−1, x′) ≤ C. Then, by the
maximum principle,

uk(x) ≤ C ‖(1 +
√
x1) f‖L2(G) + C ‖(1 +

√
x1) g‖L2(Γ ), x ∈ G−1

−k.

Combining the last estimate with (26.29)–(26.31) and recalling the relation
uk = vk + wk, we see that

‖uk‖L2(GN+1
N

) ≤ C ‖(1 +
√
x1) f‖L2(G) + C ‖(1 +

√
x1) g‖L2(Γ ), N ∈ Z,

where the constant C does not depend on k. Standard elliptic estimates imply

‖∇uk‖L2(GN+1
N

) ≤ C ‖(1 +
√
x1) f‖L2(G) + C ‖(1 +

√
x1) g‖L2(Γ ).

Thus, up to a subsequence, uk(x) converges in H1
loc(G) to some function u(x),

as k →∞. Passing to the limit in the integral identity, one can see that u(x)
solves problem (26.26). The existence of a bounded solution to problem (26.1)
is proved. The result on the exponential stabilization to a constant at +∞
and −∞ of a solution to problem (26.26) follows from the similar results for
equations stated in a semi-infinite cylinder (see [PaPi09], Theorem 7.6).
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27.1 Introduction

In this chapter we apply fixed point results for mappings in partially ordered
spaces presented in ([CaHe00], [HeiLa94]) to derive existence results for the
Cauchy problem

q(u(t))u′(t) = f(t, u) for a.e. t ∈ J = [0, T ], u(0) = 0, (27.1)

and for the Cauchy–Nicoletti problem

qi(ui(t))u′
i(t) = fi(t, u) for a.e. t ∈ J, ui(ti) = ci, i = 1, ..., n, (27.2)

where 0 = t1 < t2 < · · · < tn = T, c = (c1, ..., cn) ∈ Rn. The considered
problems include the following special types:

• The differential equations in (27.1) and (27.2) can be singular because
q(0) = 0 and qi(ci) = 0 are allowed.

•
pend functionally on the unknown function u.

• The functions q, qi, f , and fi may be discontinuous in all their arguments.

in the case when J = [0, 1],

q(y) =
y2

1 + y2
and f(t, u) =

3
2

cos(t) arctan
(

3D(t) + [
1
∫
0
u(t) dt]

)
,

where [·] denotes the greatest integer function and D is the Dirichlet function.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010
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The right-hand sides of the differential equations in (27.1) and (27.2) de-

As an application, we calculate the least and greatest solutions of (27.1)

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_27,
C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 
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27.2 Cauchy Problem

Denote C+(J) = {u : J → R+ | u is continuous}, and equip C+(J) with a
pointwise ordering. We shall show that if the functions q : R+ → R+ and
f : J × C+(J) → R+ satisfy

then the Cauchy problem (27.1) has least and greatest on (0, T ] locally ab-
solutely continuous solutions, and they are increasing with respect to f . We
shall convert the Cauchy problem (27.1) to a fixed-point equation u = Gu,
where the operator G is determined by the following lemma.

Lemma 1. Let the hypotheses (h0)–(h2) hold. Then the equation∫ Gu(t)

0
q(y) dy =

∫ t

0
f(s, u) ds, t ∈ J, u ∈ C+(J) (27.3)

defines a mapping G : C+(J) → C+(J). Moreover, for each t0 ∈ (0, T ) there
exists a positive constant M(t0) such that

0 < Gu(x) ≤ Gu(t) ≤ Gu(x) +M(t0)
∫ t

x

h(s) ds (27.4)

whenever u ∈ C+(J) and t0 ≤ x ≤ t ≤ T .

Proof. Assume that u ∈ C+(J). The hypotheses (h0)–(h2) imply that (27.3)
defines a mapping G : C+(J) → C+(J). Assume that 0 < t0 ≤ x ≤ t ≤ T and
u ∈ C+(J). Applying (h1) and noticing that f(·, u) is nonnegative valued, we
get ∫ T

0
h(s) ds ≥

∫ t

0
f(s, u) ds ≥

∫ x

0
f(s, u) ds ≥

∫ t0

0
f(s, 0) ds > 0.

This result implies by (27.3) and (h2) that

0 < G0(t0) ≤ Gu(x) ≤ Gu(t) ≤ b. (27.5)

Because 1
q ∈ L∞

loc(0,∞) by (h2), there is a positive constant M(t0) such
that

1
q(y)

≤M(t0) for a.e. y ∈ [G0(t0), b]. (27.6)

It then follows from (27.5) and (27.6) that

1
M(t0)

≤ q(y) for a.e. y ∈ [Gu(x), Gu(t)].

(h0) f(·, u) is Lebesgue measurable and f(·,u)≤ h ∈ L1(J) for all u ∈ C+(J);
(h1) 0 <

∫ t
0 f(s, u) ds ≤

∫ t

0 f(s, v) ds whenever u ≤ v in C+(J), t ∈ (0, T ];
(h2) q ∈ L1

loc(R+), 1
q ∈ L∞

loc(0,∞), and
∫ b
0 q(y) dy ≥

∫ T
0 h(s) ds for some b > 0,
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Applying this result and (27.3), we then have

Gu(t)−Gu(x)
M(t0)

=
∫ Gu(t)

Gu(x)

1
M(t0)

dy

≤
∫ Gu(t)

Gu(x)
q(y) dy =

∫ t

x

f(s, u) ds ≤
∫ t

x

h(s) ds.

This result and (27.5) imply that (27.4) holds.

Denote by AC+
loc(0, T ] the set of all u ∈ C+(J) which are locally absolutely

continuous on (0, T ].

Lemma 2. Assume that the hypotheses (h0)–(h2) hold. Then u ∈ AC+(0, T ]
is a solution of the Cauchy problem (27.1) if and only if u is a fixed point of
the operator G : C+(J) → C+(J) defined by (27.3).

Proof. Assume first that u ∈ AC+
loc(0, T ] is a solution of (27.1). The hypothe-

ses (h1) and (h2) and the differential equation of (27.1) imply that u′(t) ≥ 0
a.e. in J . Thus, u is in C+(J), and satisfies by (27.1) the integral equation∫ t

0
q(u(s))u′(s) ds =

∫ t

0
f(s, u) ds, t ∈ J. (27.7)

Because q ∈ L1
loc(R+), u ∈ AC+

loc(0, T ], and u is monotone, we can change by
([McSh74], 38, 3-4) the variable on the left-hand side of (27.7) to obtain∫ u(t)

u(t0)
q(y) dy =

∫ t

t0

f(s, u) ds, 0 < t0 ≤ t ≤ T.

Noticing that u(0) = 0, we obtain∫ u(t)

0
q(y) dy =

∫ t

0
f(s, u) ds, t ∈ J. (27.8)

It then follows from (27.3) and (27.8) that u = Gu, i.e., u is a fixed point of
G. Conversely, assume that u is a fixed point of G, defined by (27.3). Since
u = Gu, it follows from (27.4) that

0 ≤ u(t)− u(x) ≤M(t0)
∫ t

x

h(s) ds whenever 0 < t0 ≤ x ≤ t ≤ T. (27.9)

Since the function t �→
∫ t
0 h(s) ds is absolutely continuous on J , it follows

from (27.9) that u is absolutely continuous on [t0, T ], for each t0 ∈ (0, T ).
Moreover, u is increasing by (27.9), so that we can change by ([McSh74], 38,
3-4) the variable on the left-hand side of
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u(t0)
q(y) dy =

∫ t

t0

f(s, u) ds, 0 < t0 ≤ x ≤ t ≤ T, (27.10)

and obtain ∫ t

t0

q(u(s))u′(s) ds =
∫ t

t0

f(s, u) ds, t ∈ J. (27.11)

Since (27.11) holds for any t0 ∈ (0, T ), differentiating sidewise with respect to
t, we see that the differential equation of (27.1) holds for a.e. t ∈ J . Moreover,
it follows from (27.8) as t = 0 that u(0) = 0. Thus, u ∈ AC+

loc(0, T ] is a
solution of the Cauchy problem (27.1).

The following fixed point result is a consequence of Theorem A.2.1. of
[CaHe00].

Lemma 3. Assume that G : C+(J) → C+(J) is increasing, i.e., Gu ≤ Gv
whenever u ≤ v, that the range G[C+(J)] of G is order bounded, and that each
well-ordered chain of G[C+(J)] has a supremum in C+(J), and each inversely
well-ordered chain has an infimum in C+(J). Then G has least and greatest
fixed points, and they are increasing with respect to G.

Now we are ready to prove our main existence result for the Cauchy prob-
lem (27.1).

Theorem 1. Assume that the hypotheses (h0)–(h2) hold. Then the Cauchy
problem (27.1) has least and greatest solutions in AC+

loc(0, T ], and they are
increasing with respect to f .

Proof. It suffices to show that the operator G, defined by (27.3), satisfies the
hypotheses of Lemma 3. If u ≤ v in C+(J), it follows from (27.3) by the
hypothesis (h1) that∫ Gu(t)

0
q(y) dy =

∫ t

0
f(s, u) ds ≤

∫ t

0
f(s, v) ds =

∫ Gv(t)

0
q(y) dy, t ∈ J.

This implies that Gu(t) ≤ Gv(t) for each t ∈ J , whence G is increasing. Since
(27.5) holds for each u ∈ C+(J), then the range of G is order bounded. It
follows from (27.4) that for each t0 ∈ (0, T ) the restrictions of Gu, u ∈ C+(J),
to [t0, T ] form an equicontinuous set. Moreover, (27.3) implies by (h0) that∫ Gu(t)

0
q(y) dy ≤

∫ t

0
h(s) ds, u ∈ C+(J), t ∈ J.

Thus the functions Gu, u ∈ C+(J), are equicontinuous at 0. Consequently,
G[C+(J)] is an equicontinuous subset of C+(J). It then follows from Proposi-
tion 1.3.8 of [HeiLa94] and its dual that each well-ordered chain of G[C+(J)]
has a supremum in C(J) and each inversely well-ordered chain of G[C+(J)]
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has an infimum in C(J). Because each Gu is nonnnegative valued, then these
supremums and infimums belong to C+(J).

The preceding proof shows that the operator G defined by (27.3) satisfies
the hypotheses of Lemma 3, whence G has a least fixed point u∗ and a great-
est fixed point u∗. According to Lemma 2, u∗ and u∗ are least and greatest
absolutely continuous solutions of the Cauchy problem (27.1).

The last assertion is an easy consequence of the last conclusion of Lemma 3
and the definition of G.

Example 1. Determine the least and greatest solutions to the Cauchy problem

u′(t) =
3
2
(1 + u(t)−2) cos(t) arctan

(
3D(t) + [

1
∫
0
u(t) dt]

)
, u(0) = 0, (27.12)

for a.e. t ∈ J = [0, 1], where [·] denotes the greatest integer function and D
is the Dirichlet function.

Solution. Problem (27.12) can be rewritten in the form (27.1), where

q(y) =
y2

1 + y2
, f(t, u) =

3
2

cos(t) arctan
(

3D(t) + [
1
∫
0
u(t) dt]

)
. (27.13)

Simple calculations show that (27.13) defines mappings q : R+ → R+ and
f : J×C+(J) → R which satisfy the hypotheses (h0)–(h2). It then follows from
Theorem 1 that the Cauchy problem (27.1) has least and greatest absolutely
continuous solutions. By Lemma 2 the solutions of (27.12) are the same as
the fixed points of the operator G : C+(J) → C+(J) given by (27.3) with q
and f defined by (27.13), or equivalently,

Gu(t) = arctanu(t)+
3
2

∫ t

0

(
cos(s) arctan(3D(s) + [

1
∫
0
u(t) dt])

)
ds. (27.14)

By the proof of Lemma 3 (Theorem A.2.1. of [CaHe00]) the least solution u∗
is the maximum of the well-ordered chain C in C+(J) which satisfies

a = minC, and a < u ∈ C <=> u = supG[{v ∈ C | v < u}], (27.15)

where a ≡ 0. It is easy to show that the least elements of C are the successive
approximations: un+1 = Gun, n ∈ N, u0 = a. Calculating these approxima-
tions it turns out that for n ≥ 2 they satisfy

un+1(t) = arctanun(t) +
3
2

arctan(4) sin(t), t ∈ J.

Because the sequence (un)∞
n=1 is increasing and belongs to G[C+(J)], which

is an equicontinuous set by the proof of Theorem 1, it converges uniformly on
J to the solution uω of the equation
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u(t) = arctanu(t) +
3
2

arctan(4) sin(t), t ∈ J. (27.16)

Since
∫ 1
0 uω(t) dt ≈ 1.97, then [

∫ 1
0 uω(t) dt] = 1. Consequently, if f is defined

by (27.13), then

f(t, uω) =
3
2

arctan(4) cos(t), a.e. in J.

Thus, ∫ t

0
f(s, uω) ds =

3
2

arctan(4) sin(t), t ∈ J,

whence the solution uω of (27.16) is a fixed point of G, i.e., a solution of

u(t) = arctanu(t) +
3
2

∫ t

0

(
cos(s)arctan(3D(s) + [

1
∫
0
u(t) dt])

)
ds (27.17)

on J.Moreover, the above reasoning shows that uω = maxC, so that uω = u∗.
In particular, (27.16) is the implicit representation of the least absolutely
continuous solution of the Cauchy problem (27.12).

Similarly, the greatest solution u∗ of (27.12) is the minimum of the in-
versely well-ordered chain D in Y which satisfies

b = maxD, and b > u ∈ D <=> u = inf G[{v ∈ C | u < v}], (27.18)

where G is defined by (27.14) and b ≡ 3. The greatest elements of D are the
successive approximations: vn+1 = Gvn, n ∈ N, v0 = b. Calculating these
approximations, it turns out that for n ≥ 2 they satisfy

vn+1(t) = arctan vn(t) +
3
2

arctan(5) sin(t), t ∈ J.

The sequence (vn)∞
n=0 is decreasing and equicontinuous, whence it converges

uniformly on J to the solution vω of the equation

u(t) = arctanu(t) +
3
2

arctan(5) sin(t), t ∈ J. (27.19)

Since
∫ 1
0 vω(t) dt ≈ 2.01, then [

∫ 1
0 vω(t) dt] = 2. Consequently, if f is defined

by (27.13), then

f(t, vω) =
3
2

arctan(5) cos(t), a.e. in J.

Thus, ∫ t

0
f(s, vω) ds =

3
2

arctan(5) sin(t), t ∈ J,
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whence the solution u = vω of (27.19) is a fixed point ofG, and hence a solution
of (27.17) and (27.12). Moreover, vω = minD, so that vω = u∗. Thus, (27.19)
is the implicit representation of the greatest absolutely continuous solution of
(27.12).

Remark 1. The calculations needed in (1) are carried out by using Maple 9
and simple Maple programs. The solutions u∗ and u∗ are shown in Figure
27.1.

y
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3
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0

t

10 80 2 0 4

1

1 5

0 0 6

Fig. 27.1. Least and greatest solutions of (27.12).

27.3 Cauchy–Nicoletti Problem

Next we will study the Cauchy–Nicoletti problem

qi(ui(t))u′
i(t) = fi(t, u) for a.e. t ∈ J = [0, T ], ui(ti) = ci, i = 1, ..., n,

(27.20)
where 0 = t1 < t2 < · · · < tn = T, and c = (c1, ..., cn) ∈ Rn. For other studies
of the Cauchy–Nicoletti problem see, e.g., [BlWa76], [Ka04], and [Sei82].

Denote Cn(J) = {u = (u1, ..., un) : J → Rn | ui is continuous, i = 1, ..., n},
and equip Cn(J) with the partial ordering defined by

u ≤ v <=> ui ≤ vi, i = 1, ..., n.

The functions qi : R+ → R+ and fi : J × Cn(J) → R+, i = 1, ..., n, are
assumed to satisfy the following:
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We note that the first inequality in (H2) holds for a 2-point problem,
t1 = 0, t2 = T , if, for example, f1(t, u) is increasing and f2(t, u) decreasing in
u for t ∈ J . In a 3-point problem we might have f1(t, u) increasing in u for
t ∈ J , f2(t, u) increasing in u for t ∈ [0, t2] and decreasing for t ∈ [t2, T ] and
f3(t, u) decreasing in u for t ∈ J .

By a solution of problem (27.20) we mean a function u ∈ Cn(J) such
that every component function ui is locally absolutely continuous on (ti, T ],
i = 1, ..., n − 1, and on [0, ti), i = 2, ..., n, and u satisfies (27.20). Denote
[d, b] = {u ∈ Cn(J)|d ≤ u ≤ b}.
Lemma 4. Let the hypotheses (H0)–(H2) hold. Then the equations

∫ Giu(t)

ci

qi(y) dy =
∫ t

ti

fi(s, u) ds, t ∈ J, u ∈ [d, b], i = 1, ..., n, (27.21)

define an increasing mapping G : [d, b] → [d, b], G = (G1, ..., Gn). Moreover,
problem (27.20) has a solution u ∈ [d, b] if and only if u is a fixed point of G.

Proof. Let u ∈ Cn(J), d ≤ u ≤ b. Using assumptions (H0) and (H1), it
can be proved, similarly as in the proof of Lemma 2, that Giu is defined on
J, i = 1, 2, ..., n. Moreover, we may choose t̄i0 and ti0 such that for ti < t̄i0 ≤
x ≤ t ≤ T, i = 1, ..., n− 1, we have∫ bi

ci

qi(y) dy ≥
∫ T

ti

hi(s) ds ≥
∫ t

ti

fi(s, u) ds

≥
∫ x

ti

fi(s, u) ds ≥
∫ t̄i0

ti

fi(s, d) ds > 0,

which implies that

ci < Gid(t̄i0) ≤ Giu(x) ≤ Giu(t) ≤ bi
and for 0 ≤ t ≤ x ≤ ti0 < ti, i = 2, ..., n, we have∫ di

ci

qi(y) dy ≤
∫ 0

ti

hi(s) ds ≤
∫ t

ti

fi(s, u) ds

≤
∫ x

ti

fi(s, u) ds ≤
∫ ti0

ti

fi(s, b) ds < 0,

(H0) fi(·, u) is Lebesgue measurable for all u ∈ Cn(J), qi ∈ L1
loc (ci,∞) ∩

L1
loc(−∞, ci), and 1

q i
∈ L∞

loc(ci,∞)∩L∞
loc(−∞, ci) for i=2, ..., n−1, q1 ∈

L1
loc(c1,∞), qn ∈ L1

loc(−∞, cn), 1
q1
∈ L∞

loc(c1,∞), 1
qn
∈ L∞

loc(−∞, cn) ;
(H1) there exist hi ∈ L1(J), di < ci, and bi > ci such that fi(·, u) ≤ hi for

u ∈ Cn(J), (d1, ..., dn) = d ≤ u ≤ b = (b1, ..., bn), and
∫ ti
0 hi(s) ds ≤∫ ci

di
qi(y) dy for i= 2, ..., n,

∫ T
ti
hi(s) ds≤

∫ bi

ci
qi(y) dy for i= 1, ..., n− 1;

(H2)
∫ t
ti
fi(s, u) ds≤

∫ t
ti
fi(s, v) ds and |

∫ t
ti
fi(s, u) ds|> 0 for t ∈ J , t �= ti and

for u, v ∈ Cn(J), d ≤ u ≤ v ≤ b.
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which implies that

di ≤ Giu(t) ≤ Giu(x) ≤ Gib(ti0) ≤ ci.

Hence, d ≤ Gu ≤ b. For d ≤ u ≤ v ≤ b we have∫ Giu(t)

ci

qi(y) dy =
∫ t

ti

fi(s, u) ds ≤
∫ t

ti

fi(s, v) ds

=
∫ Giv(t)

ci

qi(y) dy t ∈ J, i = 1, ..., n,

which implies that Giu(t) ≤ Giv(t), i = 1, ..., n, i.e., that G : [d, b] → [d, b] is
increasing.

As in the proof of Lemma 2, it can be proved that the functions Giu
are absolutely continuous on closed subintervals of (ti, T ], i = 1, ..., n − 1,
and [0, ti), i = 2, ..., n, and again using the change of variables that problem
(27.20) has a solution u ∈ [d, b] if and only if u is a fixed point of G.

Theorem 2. Assume that the hypotheses (H0)–(H2) hold. Then the Cauchy–
Nicoletti problem (27.20) has least and greatest solutions in the segment [d, b]
of Cn(J).

Proof. The result is a consequence of Lemma 4, Theorem A.2.1 of [CaHe00]
and of Proposition 1.3.8 of [HeiLa94] when we note that in Lemma 3 G[C+(J)]
can be replaced by [d, b], and similarly as in the proof of Theorem 1 it can be
shown that G[d, b] is an equicontinuous subset of Cn(J).

As an example of a Cauchy–Nicoletti problem, we will consider a singular
2-point boundary value problem:

q(u′(t))u′′(t) = f(t, u) for a.e. t ∈ J = [0, 1], u(0) = u0, u
′(1) = u1, (27.22)

where u0 ∈ R, u1 > 0, and q : R+ → R+ and f : J × C2(J) → R+ satisfy
(f0) f(·, u) is Lebesgue measurable and f(·, u) ≤ h ∈ L1(J) for all u ∈ C2(J);
(f1) 0 <

∫ 1
t
f(s, u) ds ≤

∫ 1
t
f(s, v) ds whenever u ≤ v in C2(J), t ∈ [0, 1);

(q1) q ∈ L1
loc(−∞, u1), 1

q ∈ L∞
loc(−∞, u1), and

∫ u1

a
q(y) dy ≥

∫ 1
0 h(s) ds for

some a ∈ (0, u1).

Corollary 1. Assume that the hypotheses (f0), (f1), and (q1) hold. Then there
exist such d = (d1, d2) and b = (b1, b2) ∈ R2 that the boundary value problem
(27.22) has least and greatest solutions satisfying d ≤ (u, u′) ≤ b.

Proof. By choosing n = 2, t1 = 0, t2 = 1, u1 = u, u2 = u′, f1(t, u) =
u2(t), f2(t, u) = f(t, u), c1 = u0, c2 = u1, q1 ≡ 1, and q2 = q, the prob-
lem (27.22) is converted to problem (27.20). Now choose b1 and b2 such
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that u0 + b2 ≤ b1 and let d1 < b1, d2 = a, and h2 = h. Then for
(u, u′) ∈ [d, b] = [(d1, d2), (b1, b2)] we have f1(t, u) ≤ h1(t) for h1(t) ≡ b2
and

∫ 1
0 h1(s) ds ≤

∫ b1
c1
q1(y) dy is equivalent to u0 + b2 ≤ b1. Since∫ t

0 f1(s, u) ds =
∫ t
0 u2(s) ds > 0, t ∈ (0, 1], and (f1) holds, we note that the

assumptions (H0)–(H2) are satisfied, and the conclusion follows from Theo-
rem 2.
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[CaHe00] Carl, S., Heikkilä, S.: Nonlinear Differential Equations in Ordered Spaces,
Chapman & Hall/CRC, Boca Raton, FL (2000).

[Ka04] Kalas, J.: Nonuniqueness theorem for a singular Cauchy–Nicoletti prob-
lem. Abstract Appl. Anal., 7, 591–602 (2004).
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28.1 Preliminaries

We consider the equation

(Au+)(x) = f(x), x ∈ Ca+, (28.1)

where A is a pseudo-differential operator with symbol A(ξ) satisfying the
condition

c1 ≤
∣∣A(ξ)(1 + |ξ|)−α∣∣ ≤ c2, ∀ξ ∈ Rm,

and Ca+ is the cone {x ∈ Rm : xm > a|x′|, x′ = (x1, . . . , xm−1), a > 0}.

Definition 1. The symbol A(ξ) admits a wave factorization with respect to
the cone Ca+ if it can be represented in the form

A(ξ) = A	=(ξ)A=(ξ),

where the factor A 	=(ξ) has the following properties:
1) A 	=(ξ) is defined on Rm m : a2x2

m =
|x′|2};

2) A	=(ξ) admits an analytical continuation into the radial tube domain

T (
∗
Ca+) [V64] over the cone

∗
Ca+ = {x ∈ Rm : axm > |x′|}, satisfying the

estimate ∣∣∣A±
	=(ξ + iτ)

∣∣∣ ≤ c(1 + |ξ|+ |τ |)±κ, ∀τ ∈
∗
C
a
+.

Analogous properties must have the factor A=(ξ) with α− κ instead of κ

and
∗
Ca− = −

∗
Ca+ instead of

∗
Ca+.

The number κ is called the index of the wave factorization.
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except possibly at the points {x ∈ R
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28.2 Solvability

Let Hs(Rm) be the vector space of functions with norm

||u||2s =
∫

Rm

|ũ(ξ)|2(1 + |ξ|)2sdξ,

where “∼” denotes the distributional Fourier transform, and Hs(Ca+) is the
subspace of Hs(Rm) of all elements with support in Ca+.

We define an integral operator Gm (at first for functions from the Schwartz
class S(Rm)) by the formula

(Gmu)(x) = lim
τ→0+

∫
Rm

u(y′, ym)dy

[(x′ − y′)2 − a2(xm − ym + iτ)2]m/2
,

which can be extended to a bounded operator L2(Rm) → L2(Rm). Such an
operator will help us construct the solution of equation (28.1). The right-

hand side of (28.1) is assumed to belong to the space
◦
Hs−α(Ca+) consisting of

functions f ∈ Hs−α(Ca+) admitting a continuation #f ∈ Hs−α(Rm), with the
norm

||f ||+s = inf ||#f ||s,
and the infimum is taken for all continuations #.

Theorem 1. If the symbol A(ξ) admits a wave factorization with respect to
the cone Ca+ with index κ = 0, then equation (28.1) with arbitrary right-hand

side f ∈
◦
Hs−α(Ca+) has a unique solution u+ ∈ Hs(Ca+), which can be written

in the form
ũ+(ξ) = A−1

	= (ξ)GmA−1
= #̃f , (28.2)

and satisfies the a priori estimate

||u||s ≤ c||f ||+s−α.

28.3 Asymptotics

First, we consider m = 2. The operator G2 defined by (τ > 0 is fixed)

(G2u)(x) = lim
τ→0+

∫
R2

u(y1, y2) dy1dy2
(x1 − y1)2 − a2(x2 − y2 + iτ)2

,

after the change of variables
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(x1 − y1)2 − a2(x2 − y2 + iτ)2

= (x1 − y1 − a(x2 − y2 + iτ)) (x1 − y1 + a(x2 − y2 + iτ))
= (z1 − η1)(z2 − η2),

where z1 = x1 − ax2 − aiτ, z2 = x1 + ax2 + aiτ, η1 = y1 − ay2, η2 = y1 + ay2,
will take the form

(G̃2u)(ξ1, ξ2) = lim
τ→0+

1
2a

∫
R2

u(η1, η2) dη1η2
(z1 − η1)(z2 − η2)

, (28.3)

where ξ1 = x1 − ax2 and ξ2 = x1 + ax2.
We remark that such a linear transformation maps the first quadrant of

the plane onto the second one.
As in [G77], we can introduce a piecewise analytical function

Φ(z1, z2) =

+∞∫
−∞

+∞∫
−∞

u(η1, η2) dη1dη2
(z1 − η1)(z2 − η2)

for a suitable function u(η1, η2), and then in formula (28.3) we have the bound-
ary values Φ−+, which consist of four summands (up to constants):

Φ−+(ξ1, ξ2) = −u(ξ1, ξ2) +
1
πi

∫ +∞

−∞

u(η1, η2) dη1
ξ1 − η1

− 1
πi

∫ +∞

−∞

u(ξ1, η2) dη2
ξ2 − η2

− 1
π2

∫ +∞

−∞

∫ +∞

−∞

u(η1, η2) dη1dη2
(ξ1 − η1)(ξ2 − η2)

. (28.4)

This is the basic formula that will help us obtain an asymptotic expansion
of the solution near the boundary.

The second and third summands are Cauchy-type integrals (Hilbert trans-
forms), and for such functions specific methods are already developed (see
[E81]). The first part of (28.4) is a smooth function. The last integral is a
combination of the second and third integrals, and we can apply to it the
same approach.

We consider a pseudo-differential operator with symbol A−1
	= (ξ). Its homo-

geneity order is equal to −κ. Roughly speaking, this means that the corre-
sponding integral operator looks like the convolution operator

F−1
ξ→y

[
A−1

	= ũ
]

=
∫
R2

K(x− y)u(y) dy,

assuming that the integral exists (at least in the Calderon–Zygmund sense),
and its kernel satisfies the estimate |K(x)| ≤ c|x|−m−κ.

Suppose now that the function u(y) is sufficiently smooth and has compact
support in Ca+. Then
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v(x) =
∫
R2

K(x− y)u(y) dy =
∫
Ca

+

K(x− y)u(y) dy,

and if x /∈ Ca+, then v(x) = 0, i.e., supp v(x) ≡ D ⊂ Ca+.
Let r(x) be the distance from x to ∂Ca+, and suppose that r(x) is so small

that B
(
x, r(x)2

)
⊂ D; then

|v(x)| ≤ c
∫

D\B
(
x,

r(x)
2

) |u(y)| dy
|x− y|m+κ .

If y ∈ D \B
(
x, r(x)2

)
, then

|x− y| ≤ |x− y|+ r(x)
2

≤ 2|x− y|,

so that
|v(x)| ≤ c(u)

∫
D\B
(
x,

r(x)
2

) dy(
|x− y|+ r(x)

2

)m+κ ,

where c(u) is a constant depending on u.
In the last integral, using spherical coordinates we can easily obtain the

estimate

|v(x)| ≤ c(u)
d∫

r(x)
2

dt(
t+ r(x)

2

)m+κ ,

from which it immediately follows that

|v(x)| ≤ c(u)

⎧⎨⎩
r(x), κ > −1,
ln r(x), κ = −1,
1, κ < −1.

(28.5)

As mentioned in [E81], the solution u+(x) under κ ≤ −1
2 will, in general,

be a distribution, which needs further consideration.
Since the operator Gm acts like a multiplier in Fourier images and does not

change the smoothness properties of functions, it follows that for a sufficiently
smooth right-hand side f , the solution u+(x) of equation (28.1) will be smooth
everywhere except perhaps at boundary points with growth (28.5).
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29.1 Introduction

Normalization and normal forms play an important part in mathematical
analysis and algebra. For instance, n×n-matrices can be put in Jordan normal
form. Such an example also makes it clear that normalization is not a unique
procedure as the choice of normalization of matrices depends on its purpose.

in all special cases and in other mathematical problems as well, the general
aim of normalization is a simplification of the object by transformation.

In the case of ordinary differential equations (ODEs) of the form

ẋ = εf(t, x),

with ε a small positive parameter, averaging normalization can be summarized
as follows. Assume that the limit

f0(z) = lim
T→∞

1
T

∫ T

0
f(z, s)ds

exists. Introduce the averaging normalization transformation

x(t) = z(t) + ε
∫ t

0
(f(z, s)− f0(z))ds.

With a few assumptions and using elementary calculations, one finds for z the
equation

ż = εf0(z) + ε2f1(t, z, ε).

The equation has been normalized to O(ε); the simplification is the removal
of the variable t and what are called nonresonant terms from the equation
to O(ε). With additional assumptions one can extend the normalization to
O(ε2) and higher order.
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In the case of matrices there is a vast literature with many possibilities, but
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This procedure for ODEs is well known; for a description and references
see [SaVeMu07]. The aim of this chapter is to describe in a tutorial way
the normalization procedure for a number of partial differential equations
(PDEs) (Sections 29.2–29.4) and to discuss a few new examples. Averaging
normalization for PDEs is of more recent date, and the theory is far from
complete. Additional material on this topic can be found in [Ve05].

29.2 Normal Forms for Parabolic Equations

A typical problem formulation is to consider an equation of the form

ut + Lu = εf(u), t ≥ 0, (29.1)

with given initial and boundary values, L a linear operator, u an element
of a suitable function space, and f(u) representing the linear and nonlinear
perturbation terms.

The first step is to solve the “unperturbed” problem

∂u0

∂t
+ Lu0 = 0, t ≥ 0, (29.2)

with the given initial and boundary values. If the domain has a simple geo-
metrical shape like a circle or a rectangle, this may not present difficulties. In
real-life problems, the domain is more complicated, and one has to resort to
numerical methods.

One may well ask: if we have to use numerical methods for the unper-
turbed problem, why would I not use these methods directly for the perturbed
problem? The answer is that in evolution equations, long-time numerical in-
tegrations may present a big obstacle. Averaging weeds out the short-periodic
or short-oscillatory terms, and this improves the interval of validity of the
computations enormously. So, even if we have to perform numerical integra-
tion of the unperturbed and the normalized equation(s), this may still be an
effective procedure.

29.2.1 Advection

To focus the discussion, we consider a problem from [Kr91]. In this case, the
domain is two dimensional, and the unperturbed equation is

∂C0

∂t
+∇(v0.C0) = 0, t ≥ 0. (29.3)

The equation describes advection for transport problems. We will consider the
application to tidal basins like the North Sea. In this case, the two-dimensional
vector v0 = v0(x, y, t) is the basic periodic flow due to tidal currents that is
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supposed to be known. The transportation of material, e.g., sediment or chem-
icals, is represented by the concentration C0; the term ∇(v0.C0) represents
the advection with the flow.

In the application to tidal basins, one often considers the basic flow to be
divergence free, so

∇.v0 = 0.

The unperturbed equation becomes

∂C0

∂t
+ v0.∇C0 = 0, t ≥ 0. (29.4)

Equation (29.4) is a first order equation which can be integrated along the
characteristics P (t)(x, y), in this case also called streamlines. Due to the
uniqueness of the solutions of equation (29.4), P (t)(x, y) is an invertible map
with inverse Q(t)(x, y).

The solution C0 is constant along the characteristics, so on adding the
initial condition

C0(x, y, 0) = γ(x, y),

we find the solution
C0(P (t)(x, y), t) = γ(x, y),

so that
C0(x, y, t) = γ(Q(t)(x, y)). (29.5)

29.2.2 Advection–Diffusion

Several types of perturbations of advection are possible. For the application
in [Kr91], one considers the fact that tidal basins are open. This results in a
small rest stream so that the tidal current is perturbed:

v(x, y, t) = v0(x, y, t) + εv1(x, y).

The rest stream is assumed to be divergence free: ∇.v1 = 0.
A second perturbation arises from diffusion in the basin, expressed by the

term εΔC. The equation to be studied is then

∂C

∂t
+ v0.∇C + εv1.∇C = εΔC, t ≥ 0, (29.6)

with given initial condition C(x, y, 0) = γ(x, y). This is still a linear problem.
Note that the tidal current has a period of nearly 12 hours, and the effect of
small diffusion entails a timescale of 6-12 months.
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29.2.3 The Standard Form for Averaging

Using variation of constants, we obtain a slowly varying system. The trans-
formation is

C(x, y, t) = F (Q(t)(x, y), t).

If ε = 0, we have C = C0, F = γ, and C0 is constant on the characteristics.
If ε > 0 and small, this results in a slowly varying F . By differentiation we
obtain an equation of the form

∂F

∂t
= εL(t)F

with initial condition F (x, y, 0) = γ(x, y). The linear operator L(t) is com-
puted using the perturbation terms and the unperturbed solution (from P and
Q). In this problem L(t) is uniformly elliptic and T -periodic in t. Averaging
over t produces the approximating system

∂F̄

∂t
= εL0F̄

with initial value F̄ (x, y, 0) = γ(x, y) and

L0 =
1
T

∫ T

0
L(t)dt.

In [Kr91] it is proved that ||F−F̄ ||∞ = O(ε) on the long timescale 1/ε. For the
corresponding approximation C̄ of C, we have the same estimate. In [Kr91] a
number of extensions of the theory are also indicated.

29.2.4 Reactions and Sources

An extension with interesting aspects is to consider reactions of chemicals or
sediment using a reaction term f(C). It is also natural to include localized
sources indicated by B(x, y, t) which, in the case of tidal basins, can be inter-
preted as periodic dumping of chemicals or sediment in the basin. Following
[HeKrVe95] the equation becomes

∂C

∂t
+ v0.∇C + εv1.∇C = εΔC + εf(C) + εB(x, y, t), t ≥ 0, (29.7)

with given initial condition C(x, y, 0) = γ(x, y). The reaction term will in
general be nonlinear, for instance, f(C) = aC2 or f(C) = aC5, depending
on the type of reaction. B(x, y, t) is periodic in t. Using again variation of
constants, we obtain from equation (29.7) a perturbation equation in the
same way as shown above, but with a more complicated operator L(t).

As the tidal period of v0(x, y, t) is near to 12 hours, it is natural to as-
sume a common period T with the dumping process indicated by B(x, y, t).
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Averaging produces an approximation C̄ of the solution C of the initial value
problem for equation (29.7). Interestingly, the result is stronger than in the
case without the source term. One can prove that C̄ converges to the solution
C̄0 of a time-independent boundary value problem, while C converges to a
T -periodic solution which is ε-close to C̄0 for all time. The proof is based on
a maximum principle and the use of suitable subsolutions and supersolutions
of equation (29.7). For details, see [HeKrVe95].

29.3 Two Basic Normal Form Theorems

Consider the semilinear initial value problem

dw

dt
+Aw = εf(w, t, ε), w(0) = w0, (29.8)

where −A generates a uniformly bounded C0-group G(t),−∞ < t < +∞, on
the Banach space X. We have assumed the presence of a group instead of a
semigroup as our attention will now be turned to hyperbolic problems.

We assume the usual regularity conditions:

• f is continuously differentiable and uniformly bounded on D̄ × [0,∞) ×
[0, ε0], where D is an open, bounded set in X.

• f can be expanded with respect to ε in a Taylor series, at least to some
order.

The group G(t) generates a generalized solution of equation (29.8) as a
solution of the integral equation

w(t) = G(t)w0 + ε
∫ t

0
G(t− s)f(w(s), s, ε)ds.

Using the variation of constants transformation w(t) = G(t)z(t) for equa-
tion (29.8), we find what is called the standard form (see [SaVeMu07] or
[Ve05])

dz

dt
= εF (z, s, ε), F (z, s, ε) = G(−s)f(G(s)z, s, ε). (29.9)

In what follows we assume that F (z, s, ε) is an almost periodic function in
a Banach space, satisfying Bochner’s criterion; see, for instance, [Ve05]. The
average F 0 is defined by

F 0(z) = lim
T→∞

1
T

∫ T

0
F (z, s, 0)ds. (29.10)

Applying normalization by the averaging transformation

z(t) = v(t) + ε
∫ t

0

(
F (v, s, 0)− F 0(v)

)
ds, v(0) = w0, (29.11)
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produces the normal form equation

dv

dt
= εF 0(v) +O(ε2)

with theO(ε2) term still time dependent. There are at least two problems here:
the generalized Fourier spectrum of the almost periodic function F contains
an infinite number of frequencies, and the integral in equation (29.11) may
not be bounded for all time, as is the case for periodic functions.

29.3.1 Averaging Theorem

The averaging approximation z̄(t) of z(t) is obtained by omitting the O(ε2)
terms:

dz̄

dt
= εF 0(z̄), z̄(0) = w0. (29.12)

Under these rather general conditions, [Bu93] (or [Ve05]) provides the follow-
ing theorem.

Theorem 1 (general averaging). Consider equation (29.8) and the cor-
responding z(t), z̄(t) given by equations (29.9) and (29.12) under the basic
conditions stated above. If G(t)z̄(t) exists in an interior subset of D on the
timescale 1/ε, we have v(t)− z̄(t) = o(1) and

z(t)− z̄(t) = o(1) as ε→ 0

on the timescale 1/ε. If F (z, t, 0) is periodic in t, the error is O(ε).

29.3.2 Approximations for All Time

In the case of attraction, averaging–normalization leads to stronger approx-
imation results. The results can be described as follows. Consider the initial
value problem in a Banach space

ẋ = εf(x, t), x(0) = x0.

Suppose that we can average the vector field:

f0(z) = lim
T→∞

1
T

∫ T

0
f(z, s)ds

and thus can consider the averaged equation

ż = εf0(z), z(0) = x0.

We have the following result by Sanchez-Palencia ([Sa75] and [Sa76]).
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Theorem 2. Suppose that the vector fields f and f0 are continuously differ-
entiable and that z = a is an asymptotically stable critical point (in linear
approximation) of the averaged equation. If x0 lies within the domain of at-
traction of a, we have

x(t)− z(t) = o(1) as ε→ 0

for t ≥ 0. If the vector field f is periodic in t, the error is O(ε) for all time.

29.4 Normal Forms for Hyperbolic Equations

A straightforward application is to consider semilinear initial value problems
of hyperbolic type,

utt +Au = εf(u, ut, t, ε), u(0) = u0, ut(0) = v0, (29.13)

where A is a positive, self-adjoint linear operator on a separable Hilbert space
and f satisfies the basic conditions. In our applications later on, we will be
concerned with the case that we have one space dimension and that for ε = 0
we have a linear, dispersive wave equation by choosing

Au = −uxx + u.

To make the relation with equation (29.8) explicit, one writes u1 = u, u2 = ut,
and

∂u1

∂t
= u2,

∂u2

∂t
= −Au1 + εf(u1, u2, t, ε).

One uses the operator (with eigenvalues and eigenfunctions) associated with
this system.

In particular and to focus ideas, consider the case of the boundary condi-
tions u(0, t) = u(π, t) = 0.

In this case, a suitable domain for the eigenfunctions is {u ∈ W 1,2(0, π) :
u(0) = u(π) = 0}. Here W 1,2(0, π) is the Sobolev space consisting of functions
u ∈ L2(0, π) that have first order generalized derivatives in L2(0, π). The
eigenvalues are λn =

√
n2 + 1, n = 1, 2, . . . and the spectrum is nonresonant.

The implication is that F (z, s, 0) in expression (29.10) is almost periodic.
Assume now for equation (29.13) homogeneous Dirichlet conditions or ho-

mogeneous Neumann conditions. The denumerable eigenvalues in this case
are λn = ω2

n and the corresponding eigenfunctions vn(x). Substitution of the
expansion

u(x, t) =
∑

un(t)vn(x)
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into equation (29.13) and taking inner products with the eigenfunctions vn(x)
produces the infinite set of coupled second order equations

ün + ω2
nun = εF (u, t, ε), (29.14)

with u representing the infinite set un, u̇n with n = 1, 2, 3, . . . in the Dirichlet
case, n = 0, 1, 2, . . . in the Neumann case.

We shall discuss the procedure for a few examples. The variation of con-
stants transformation, introduced in the preceding sections, considers the case
of the infinite-dimensional system (29.14) the following form. The standard
transformation un, u̇n → yn1 , yn2 of the form

un = yn1 cosωnt+
yn2

ωn
sinωnt,

u̇n = −ωnyn1 sinωnt+ yn2 cosωnt,

is introduced in system (29.14), followed by averaging. An alternative trans-
formation to the standard form, un, u̇n → rn, ψn, employs amplitude-phase
coordinates:

un = rn cos(ωnt+ ψn), u̇n = −rnωn sin(ωnt+ ψn). (29.15)

In general, averaging leaves us with an infinite-dimensional system that may
still be difficult to analyze. In principle, however, it is simpler and will admit
analysis.

In our analysis of hyperbolic PDEs, we will be interested in the case where
we have a resonance between a finite number of modes k and that the infinite
number of other, nonresonant modes are attracted to a stationary solution.
To fix ideas, assume that these stationary states correspond with the trivial
solutions of the modes as will be the case in our examples. The attraction is
produced by dissipation.

With these assumptions, we shall split system (29.14) into two subsystems,
a finite-dimensional resonant system and an infinite-dimensional nonresonant
system.

29.5 Linear Waves with Parametric Excitation

Consider the linear wave equation

utt − c2uxx + εkβut + (ω2
0 + εγφ(t))u = 0, t ≥ 0, 0 < x < π, (29.16)

with boundary conditions ux(0, t) = ux(π, t) = 0, small, periodic or almost pe-
riodic parametric excitation εγφ(t), and small damping (β > 0); also ω0 > 0.
The positive parameter k ∈ N indicates the size of the damping. For ε = 0 the
model reduces to the dispersive wave equation of Section 29.4. In [RaEtAl99]
the experimental motivation for this model is discussed, for instance a line of
coupled pendulums with vertical (parametric) forcing or the linearized behav-
ior of water waves in a vertically forced channel. Related mechanical problems
can be found in [SeMa03].
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29.5.1 Modal Expansion

Using the eigenfunctions for the Neumann problem vn(x) = cosnx, and eigen-
values ω2

n = ω2
0 + n2c2, n = 0, 1, 2, . . ., we expand the solution as

u(x, t) =
∞∑
0

un(t) cosnx.

Taking L2-inner products with vn(x) produces the infinite-dimensional system

ün + ω2
nun = −εkβu̇n − εγunφ(t), n = 0, 1, 2, . . . , (29.17)

with suitable initial conditions. System (29.17) is fully equivalent to equa-
tion (29.16). Note that the normal mode solutions do satisfy system (29.17),
enabling the existence of an infinite number of finite- and infinite-dimensional
invariant manifolds of equation (29.16). One question that remains is on the
overall dynamics, and another is on the dynamics within the invariant mani-
folds. We will consider a number of cases to illustrate the subtleties involved.

29.5.2 The Mathieu Case φ(t) = cos 2t, No Resonance

We will show that if no basic frequency of the unperturbed modes, determined
by the eigenvalues ω2

n, resonates with the parametric frequency, all solutions
will decay to zero if ε is small enough. The explicit condition for nonresonance
is that for n = 0, 1, 2, . . .

ω2
n(= ω2

0 + n2c2) �= m2, m = 0, 1, 2, . . . .

Assume k = 1.
In the case of nonresonance we have, after introducing variation of constants
as in Section 29.4 by un, u̇n → yn1 , yn2 , the averaged normal form

ẏn1 = −1
2
εβyn1 +O(ε2), ẏn2 = −1

2
εβyn2 +O(ε2), n = 0, 1, 2, . . . .

The solutions decay to first order to the trivial solution. Omitting the O(ε2)
terms, we obtain approximations for the solutions that are, according to The-
orem 2, valid for all time. We have explicitly

un(t) = e−
1
2 εβt(un(0) cosωnt+

u̇n(0)
ωn

sinωnt) + o(1),

u̇n(t) = e−
1
2 εβt(−un(0)ωn sinωnt+ u̇n(0) cosωnt) + o(1),

n = 0, 1, 2, . . . , with the estimates o(1) as ε→ 0 and validity of the estimates
for all positive time (t ≥ 0). For the energy of the modes of the system we
have
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En(t) =
1
2
(u̇2
n(t) + ω2

nu
2
n(t)) = En(0)e−εβt + o(1)

for all time. This agrees with the standard theory for Mathieu equations.

What happens if the damping is smaller, k > 1? In this case we have to
perform higher order averaging, to O(εk). The results are qualitatively the
same, but the attraction takes place on a longer timescale.

29.5.3 The Mathieu Case φ(t) = cos 2t, One Floquet Resonance

A nontrivial case arises if one of the eigenvalues equals 1 or is ε-close to it
(this is called the first Floquet resonance), and there are no other accidental
resonances. Suppose that ω2

m = 1 + εd, m �= 0 and k = 1. The parameter d
indicates the detuning from the resonance. Using averaging–normalization in
amplitude-phase variables (29.15), we find after averaging, with some abuse
of notation using the same rn, ψn for the variables,

ṙn = −εβ
2
rn +O(ε2), n �= m,

ψ̇n = O(ε2), n �= m,

ṙm =
1
2
εrm(−β +

γ

2
sin 2ψm) +O(ε2),

ψ̇m =
1
2
ε(d+

γ

2
cos 2ψm) +O(ε2) (m �= 0).

The solution decays to the trivial solution if β > |γ|/2 (damping exceeds
excitation). Suppose now that 2β/|γ| < 1 with two solutions for ψm from

sin 2ψm =
2β
γ
.

This value of ψm corresponds with a periodic solution if also

d+
γ

2
cos 2ψm = 0.

This produces the condition

β2 + d2 =
γ2

4
,

representing the first order approximation to the well-known Floquet insta-
bility tongue in parameter space.

29.5.4 The Case of Quasi-Periodic Resonance

As we have started with an infinite-dimensional system, there is no end to
the complications that may arise. Take, for instance, the case of a spectrum
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containing the first Floquet resonance ωm = 1 and a detuned higher order
resonance, for instance ωj = 4 + δ(ε)d. There are no other resonances.

In this case, all except two modes decay to a neighborhood of the trivial
solution. The two remaining modes are described by

üm + ω2
mum = −εkβu̇m − εγumφ(t),

üj + ω2
juj = −εkβu̇j − εγujφ(t).

The analysis again follows finite-dimensional Floquet theory, and this decou-
pling is in fact typical for the linear parametric wave equation. For a survey
of perturbation methods for such parametric resonance problems, see [Ve09].

29.6 Nonlinear Waves with Parametric Excitation

Consider the wave equation

utt−c2uxx+εβut+(ω2
0+εγ cos 2t)u = ε(au2+bu3), t ≥ 0, 0 < x < π, (29.18)

with boundary conditions ux(0, t) = ux(π, t) = 0, small, periodic parametric
excitation εγ cos 2t, and small damping (β > 0); also ω0 > 0. For ε = 0 the
model reduces again to the dispersive wave equation of Section 29.4.

In contrast to the case of a linear PDE, we now expect modal interactions.
It turns out, surprisingly enough, that this is generally not the case.

29.6.1 Modal Expansion

Using as before the eigenfunctions for the Neumann problem vn(x) = cosnx,
and eigenvalues ω2

n = ω2
0 + n2c2, n = 0, 1, 2, . . ., we expand the solution as

u(x, t) =
∞∑
0

un(t) cosnx.

Taking L2-inner products with vn(x) produces the infinite-dimensional system

ün + ω2
nun = −εβu̇n − εγun cos 2t+ εfn(u), n = 0, 1, 2, . . . , (29.19)

with suitable initial conditions; u = (u0, u1, u2, . . .). The nonlinear terms are
quadratic and cubic with constant coefficients.

System (29.19) is fully equivalent to equation (29.18). Note that the normal
mode solutions do not satisfy system (29.19), so we do not have a priori normal
mode invariant manifolds of equation (29.18). We will distinguish between the
following cases:

• Wave speed and dispersion parameter c and ω0 are O(1) quantities with
respect to ε.
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• The wave speed c is O(ε). In this case we have, assuming that ω0 is an
O(1) quantity, for a finite number of modes the 1 : 1 : 1 : · · · -resonance.
This case has been discussed in [BMV].

• The dispersion is small: ω0 = O(ε). In this case the system (29.19) is
fully resonant. This problem is unsolved; see, for instance, the discussion
in [Ve05].

29.6.2 Averaging–Normalization

Assuming that c and ω0 are O(1) quantities with respect to ε, we will carry
out the averaging process. The fact that the spatial dimension is 1 means that
all eigenvalues are single; this simplifies the averaging–normalization.

29.6.3 One Floquet Resonance

Assume that one of the eigenvalues is near resonant with respect to parametric
excitation, for instance,

ω2
0 = 1 + εd,

with d the detuning. The equations of motion become for n = 0, 1, 2, . . .

ün + (1 + n2c2)un = −ε(dun + βu̇n + γun cos 2t) + εfn(u). (29.20)

Assume that there are no other resonances between the frequencies ωn. Intro-
ducing again amplitude-phase variables (29.15), we find after averaging, with
some abuse of notation using the same rn, ψn for the variables,

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d+

1
2
γ cos 2ψ0 −

3
4
br20 −

3
4
b

∞∑
k=1

r2k),

ṙn = −1
2
εβrn, n = 1, 2, . . . ,

ψ̇n = εbhn(u).

The right-hand sides hn are quadratic in u0, u1, . . .. The modes n = 1, 2, . . .
are exponentially decreasing, nontrivial behavior can take place in mode 0
governed by

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d+

1
2
γ cos 2ψ0 −

3
4
br20).

For a critical point to exist, we have the condition (as in Subsection 29.5.3)
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2β/|γ| < 1.

The solution decays to the trivial solution if β > |γ|/2 (damping exceeds
excitation). Suppose now that we have solutions for ψm from

sin 2ψm =
2β
γ
.

This critical value of ψm corresponds with a periodic solution if also

d+
1
2
γ cos 2ψ0 −

3
4
br20 = 0.

This is a different situation from the linear case discussed earlier, as this
condition also determines r0. Suppose we find a positive solution for r20. For
the eigenvalues of the critical point we find

λ1,2 = −β ±
√

5β2 − γ2 − 2dγ cos 2ψ0.

From the existence condition we have γ2 > 4β2, so at exact Floquet resonance
(d = 0), we have stability of the periodic solution. If 4β2 < γ2 < 5β2, the
critical point is a node, if γ2 > 5β2, the critical point is a focus, and around
the stable periodic solution the solutions are spiralling in.

The picture changes if d �= 0 and large enough.

29.6.4 Additional Low Order Resonances

Assuming we have the 1 : 2 parametric resonance in mode 0, the conditions
for a combined low order resonance in system (29.20) are

1
1 +m2c2

=
1
4
,

1
9
,

for certain mode m. We find, respectively, m2c2 = 3 and m2c2 = 8. These
choices produce a 1 : 2- and a 1 : 3-resonance, respectively.

Analysis of the possibility of a first or second order resonance in three
degrees of freedom according to the resonance classification in [SaVeMu07]
produces no positive results, so we will consider two degrees of freedom only.
It is no restriction to choose m = 1, and we will have three frequencies: ω0, ω1,
and the frequency of parametric excitation 2.

29.6.5 Combined Floquet and 1 : 2-Resonance

We assume

ω2
0 = 1 + εd1, c2 = 3 + ε(d2 − d1), ω2

1 = 4 + εd2,

with d1, d2 indicating the detunings of the three frequencies. The equations
of motion from system (29.20) which may show modal interaction become
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ü0 + ω2
0u0 = −εβu̇0 − εγu0 cos 2t+ εa(u2

0 +
1
2
u2

1) + εbu0(u2
0 +

3
2
u2

1),

ü1 + ω2
1u1 = −εβu̇1 − εγu1 cos 2t+ εa2u0u1 + εbu1(3u2

0 +
3
4
u2

1).

We find after averaging, using the same rn, ψn for the variables,

ṙ0 =
1
2
εr0(−β +

1
2
γ sin 2ψ0),

ψ̇0 =
1
2
ε(d1 +

1
2
γ cos 2ψ0 −

3
4
br20 −

3
4
br21),

ṙ1 = −1
2
εβr1,

ψ̇1 = ε
1
4
(d2 −

1
2
b(3r20 +

9
8
r21)).

We conclude that, because of symmetry in the equations of motion, the 1 : 2-
resonance is degenerate in this case. This symmetry degeneration is described
in detail in [TuVe00].

29.6.6 Combined Floquet and 1 : 3-Resonance

We can repeat the analysis, assuming

ω2
0 = 1 + εd1, c2 = 8 + ε(d2 − d1), ω2

1 = 9 + εd2.

As for the 1 : 2-resonance, we find that the 1 : 3-resonance in this case is
degenerate because of symmetry. The only active resonance for system (29.20)
takes place in mode 0.

29.7 Discussion

1. We conclude that after an interval of time, asymptotically larger than 1/ε
(for instance 1/ε2), the right-hand sides of the infinite-dimensional, non-
resonant systems which we encountered in Sections 29.5 and 29.6 become
o(1). Starting with o(1) initial conditions, the nonresonant modes remain
o(1).

2. The manifold where the fast dynamics takes place is almost invariant.
We conjecture that very small fluctuations are possible for the higher or-
der modes, arising from the presence of higher order resonance manifolds
containing stable and unstable periodic solutions with corresponding in-
tersecting stable and unstable manifolds. These resonance manifolds are
of very small size, and the analysis to describe them is subtle. For an
analysis of such resonance manifolds in two-degree-of-freedom Hamilto-
nian systems, see [TuVe00].
A related discussion, for a different PDE, can be found in [WiHo97].
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3. The parametrically excited wave equation with dispersion and wave speed
independent of ε displays a remarkable reduction to low dimensional (one
mode) behavior. This becomes clear by averaging–normalization. The
equation is also of practical interest; applications are cited in [RaEtAl99].
A number of the phenomena we found, periodic and quasi-periodic solu-
tions, are stable and in this way open for experimental investigation.
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30.1 Introduction

The aim of the analysis is to recover the impact equation and the jump in
the total energy of a Lagrangian system over an impact from the stationarity
conditions of a modified action integral. The analysis is accomplished by in-
troducing internal boundary variations and thereby obtaining discontinuous
transversality conditions as the stationarity conditions of the impulsive action
integral. An impact in mechanics is defined as a discontinuity in the gener-
alized velocities of a mechanical system which is induced by some impulsive
forces. An interaction with some constraints may result in an impact and give
rise to impulsive forces. The instant of impulsive action where a discontinuity
in the generalized velocities occurs is considered as an internal boundary in
the time domain. The consideration of certain types of variations at the inter-
nal boundaries, which are called internal boundary variations by the author,
give rise to discontinuous transversality conditions. By introducing a bound-
ary at an instant of a discontinuity, one has to notice that it has a bilateral
character, in the sense that the boundary constitutes an upper boundary for
one segment of the interval, whereas for the other segment it constitutes a
lower boundary in the time domain. The constraints are therefore introduced
symmetrically with respect to pre-impact and post-impact states. It is shown
that the impact equation and the energy balance over an impact can be ob-
tained in the form of stationarity conditions for the general impact case by

tions are obtained by the application of subdifferential calculus techniques
to a suitable extended-valued lower semi-continuous generalized Bolza func-
tional, which in this case is the impulsive action integral, that is evaluated on
multiple intervals.

In the book [Br96] and the references cited therein, a thorough overview
of impact mechanics is provided. The variations at the boundaries drew at-
tention, especially in optimal control. It has been shown in [HaSe83] that
time transversality conditions are independent of the other maximum princi-
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applying the discontinuous transversality conditions. The stationarity condi-

 Volume 1: Analytic Methods, DOI 10.1007/978-0-8176-4899-2_30,
C. Constanda and M.E. Pérez (eds.), Integral Methods in Science and Engineering, 
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ple conditions. The cited reference clarifies some issues dealing with the nec-
essary condition for the optimal terminal time in free terminal time optimal
control problems. An early attempt to relate discontinuities in the generalized
velocities in the framework of distribution theory is given in [BaAn72]. The
distributional Euler equations are shown to recover the Weierstrass–Erdmann
conditions. However, it remains to be clarified whether Weierstrass–Erdmann
corner conditions are a suitable means to analyze variational problems with
discontinuity in the state. However, in [BaAn72] no reference is made to
impulsive interactions of the Lagrangian system with constraints. The con-
cepts of internal boundary variations and discontinuous transversality condi-
tions are developed by the author and are presented and discussed in [Yu07]
and [Yu08a] with applications to optimal control. A characterization of these
concepts in terms of upper and lower subderivatives to the extended-valued
lower-semicontinuous value functional under several more general regularity
assumptions can be found in [Yu08b].

30.2 Preliminaries

Let q, q̇, q̈ represent the generalized position, velocity, and acceleration in the
generalized coordinates of a scleronomic Lagrangian system with n degrees
of freedom, respectively. Hamilton postulated in 1835 that if a Lagrangian
system occupies certain positions at fixed times t0 and tf , then it should
move between these two positions along those admissible trajectories q(t) ∈
C1
n[t0, tf ] which make the action integral

J(q(t), q̇(t)) =
∫ tf

t0

L(q(s), q̇(s)) ds

stationary. The integrand L : Rn × Rn → R is called the Lagrangian and is
defined as L = T − U , where U(q) and T (q(t), q̇(t)) represent the potential
and kinetic energy, respectively. The stationarity conditions state that along
an admissible trajectory the following Euler–Lagrange equations have to be
fulfilled:

d

dt

(
∂L

∂q̇j

)
=
∂L

∂qj
, j = 1, 2, . . . , n. (30.1)

In order to extend this analysis so that it can encompass Lagrangian sys-
tems subject to impacts, the search space for the admissible trajectories q(t)
needs to be extended from the space of continuously differentiable functions
to the space of absolutely continuous functions ACn[t0, tf ]. The generalized
velocities q̇(t) become elements of the space of bounded variation functions
BVn[t0, tf ]. Functions of bounded variation, like the generalized velocities q̇
of a mechanical system which is subject to impulsive forces, are associated
with an Rn-valued regular Borel measure dq̇ on [t0, tf ]:

dq̇ = q̈ dt+ χ′dσ.
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The absolutely continuous part of the measure dq̇ is denoted by q̈ dt. The
Radon–Nikodym derivative of dq̇ with respect to dσ is given by χ′ and dσ is
some regular Borel measure. The atoms of dq̇ occur only at discontinuities of
q̇, of which there are at most countably many. Since the jumps of generalized
velocities are induced by impulsive forces, these impulsive forces also occur
at Lebesgue-negligible atoms and are countably many. The quantity Δq̇(t) =
q̇+(t)− q̇−(t) is called the jump of the arc q̇ at t, and if it is nonzero, then there
is an atom of dq̇ at t with this value. A given Rm-valued function g(q) (f(q) =
−g(q)) represents the shortest distances between the Lagrangian system and
the constraints, and these distances are always nonnegative (nonpositive) due
to the impenetrability assumption. It is assumed that D = ∇qf(q) has full
rank. Further, the distances are formulated in the inertial coordinate frame,
and the contacts are assumed to be perfect contacts without any friction
interaction. If an impact occurs, then the conservation of momentum requires(

∂L

∂q̇j

)+

−
(
∂L

∂q̇j

)−
= 〈dj , Γ〉 , j = 1, 2, . . . , n, (30.2)

to hold. It states that the change in generalized momentum is equal to the
generalized impulse ΓD. It is obtained by the Lebesgues–Stieltjes integration
of the Euler–Lagrange equations over an impact time of measure zero. Here
dj denotes the jth column of the linear operator D. The operation 〈·, ·〉 is the
dual pairing of its arguments. Physically, the contact impulse is repelling and
is therefore sign restricted. The contact impulse and the distance fulfill among
others the following complementarity relation:

fi(q) ≤ 0, Γi ≥ 0, fi(q) · Γi = 0, i = 1, . . . ,m. (30.3)

The total energy of the scleronomic Lagrangian system is given by its Hamil-
tonian:

H(q, q̇) = T (q, q̇) + V (q).

The differential measure of the Hamiltonian is given by

dH(q, q̇) =
dH

dt
dt+

(
T+ − T−) dσ.

The Lebesgue–Stieltjes integration of the differential measure of the Hamilto-
nian over the impact time yields∫

{timp}
dH = H+ −H− = T+ − T− = L+ − L−. (30.4)

The latter equality in (30.4) is due to the fact that the potential energy U
remains unaltered during an impact, since it only depends on the generalized
positions, which remain constant over an impact. The difference T+ − T− is
nonzero if and only if there is an impulsive action that induces a jump in
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the generalized velocities. The Borel measurable part of the Hamiltonian H is
therefore related to the jump in the kinetic energy in the following manner:

T
(
q(t+imp), q̇(t+imp)

)
− T
(
q(t−imp), q̇(t−imp)

)
(30.5)

=
1
2

〈
q̇(t+imp) + q̇(t−imp),M(q(timp))

(
q̇(t+imp)− q̇(t−imp)

)〉
=

1
2

〈
q̇(t+imp) + q̇(t−imp), ΓD

〉
.

The latter equality arises by inserting the expression (30.2) for the momentum
balance over an impact in the energy balance (30.5). Here the linear operator
M(q(t)), which is positive definite and symmetric, is defined element-wise as

mij(q(t)) =
∂2L

∂q̇j∂q̇i
, i = 1, . . . , n, j = 1, . . . , n.

30.3 Internal Boundary Variations and Discontinuous
Transversality Conditions

The assumptions during an impact are given as follows:
Assumptions A

1. The generalized positions remain unaffected at the impact.
2. The impact happens during an atomic time instant timp of which there

are at most countably many.
3. There are no impacts at initial time t0 and final time tf .

These assumptions are converted to requirements to the variations at the
internal boundaries. Since the impact time timp is free, the bilateral character
of the variations at pre-impact and post-impact states is also dependent on
the variations of the impact time. Several families of variational curves which
are parameterized by ε are introduced in order to generate the variations:

q(t, ε) = q(t) + ε q̂(t) = q(t) + δ q(t),
q̇(t, ε) = q̇(t) + ε ˆ̇q(t) = q̇(t) + δ q̇(t),

q(t+imp, ε) = q(t+imp) + ε q̂(t+imp) = q(t+imp) + δ q(t+imp),

q(t−imp, ε) = q(t−imp) + ε q̂(t−imp) = q(t−imp) + δ q(t−imp),

q̇(t+imp, ε) = q̇(t+imp) + ε ˆ̇q(t+imp) = q̇(t+imp) + δ q̇(t+imp),

q̇(t−imp, ε) = q̇(t−imp) + ε ˆ̇q(t−imp) = q̇(t−imp) + δ q̇(t−imp),

t+imp(ε) = t+imp + ε t̂+imp = t+imp + δ t+imp,

t−imp(ε) = t−imp + ε t̂−imp = t−imp + δ t−imp.

The variations of the pre- and post-impact generalized positions and velocities
at fixed time q̂(t+imp), ˆ̇q(t+imp), q̂(t−imp), ˆ̇q(t−imp) are related to the total variations
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in these entities q̂+
imp, ˆ̇q+

imp, q̂−
imp, ˆ̇q−

imp at t+imp and t−imp by the following affine
relations:

q̂(t+imp) = q̂+
imp − q̇(t+imp) t̂+imp, (30.6)

q̂(t−imp) = q̂−
imp − q̇(t−imp) t̂−imp, (30.7)

ˆ̇q(t+imp) = ˆ̇q+
imp − q̈(t+imp) t̂+imp − χ̂+

imp, (30.8)
ˆ̇q(t−imp) = ˆ̇q−

imp − q̈(t−imp) t̂−imp − χ̂−
imp. (30.9)

By considering the affine relations given in equations (30.6) to (30.9) the
boundary variations are decomposed into orthogonal independent variations
in t̂−imp, t̂+imp, ˆ̇q(t+imp), ˆ̇q(t−imp), q̂(t+imp), q̂(t−imp) at the impact. In determining the
stationarity conditions of the impulsive action integral, the internal boundary
variations at the impact are given by the finite-dimensional set V̂:

V̂ =
{
t̂−imp, t̂

+
imp,

ˆ̇q(t+imp), ˆ̇q(t−imp), q̂(t+imp), q̂(t−imp)
}

⊆ R× R× Rn × Rn × Rn × Rn.

Having set the stage, the impulsive action integral is stated as

J (q(t), q̇(t), timp)

=
∫ t−imp

t0

L(q(s), q̇(s)) ds+
∫ tf

t+imp

L(q(s), q̇(s)) ds+ ΨC+
imp

+ ΨC−
imp
. (30.10)

The initial and final times t0 and tf are fixed. The sets C+
imp and C−

imp are
defined as

C+
imp =

{
{q(timp), timp} | f(q(t+imp)) ≤ 0, f(q(t+imp)) ∈ Cm1

}
, (30.11)

C−
imp =

{
{q(timp), timp} | f(q(t−imp)) ≤ 0, f(q(t−imp)) ∈ Cm1

}
. (30.12)

The contact durations of the Lagrangian system with the boundary of the
constraint manifolds ∂C+

imp and ∂C−
imp are assumed to have measure zero, so

that only impulsive interactions are allowed. The indicator function ΨC(x) of
a closed and compact set C takes the value zero if x ∈ C and infinity otherwise.
Given the lower semi-continuous extended-value functional J , the stationarity
condition requires that the lower subderivatives of the value functional J↓(·; ψ̂)
are all nonnegative with respect to the admissible variations:

J↓(·; ψ̂) ≥ 0, ∀ ψ̂ ∈ V̂
⋃{

q̂(t), ˆ̇q(t)
}

and ψ̂ admissible.

Functional J is directionally Lipschitzian in all directions ψ̂ ∈ V̂⋃{q̂(t), ˆ̇q(t)}.
By reverting to the definition of the upper and lower subderivative as given in
the Appendix, one notices that the lower and upper subderivatives coincide
in the directionally Lipschitzian case:



www.manaraa.com

328 K. Yunt

J↓(·; ψ̂) = J↑(·; ψ̂), ∀ ψ̂ ∈ V̂
⋃{

q̂(t), ˆ̇q(t)
}
.

In what follows, it is shown that the stationarity conditions of the func-
tional (30.10) subject to constraints (30.11) and (30.12) recover the Euler–
Lagrange equations (30.1), the impact equation (30.2), and the energy balance
over an impact (30.5).

Indeed, if there exist trajectories q̃(t) and ˜̇q(t), impact position q̃(t̃imp),
pre-impact and post-impact generalized velocities ˜̇q(t̃−imp) and ˜̇q(t̃+imp) at an
impact time t̃imp, which all together make the Bolza functional in (30.10)
stationary, such that the value function assumes the finite value J̃(ε = 0) =
J
(
q̃(t), ˜̇q(t), t̃imp

)
, then the following variational inequality is also fulfilled:

lim inf
ε→ 0+

J(ε)− J̃(0)
ε

=
∑
∀ψ̂

J̃↑(·, ψ̂) ≥ 0, ∀ψ̂ ∈ V̂
⋃{

q̂(t), ˆ̇q(t)
}
, (30.13)

since J is directionally Lipschitzian, lower semi-continuous, and subdifferen-
tially regular at any stationary solution. Here J(ε) is an abbreviation for
J
(
q(t, ε), q̇(t, ε), t+imp(ε), t−imp(ε), q(t−imp, ε), q(t

+
imp, ε), q̇(t

+
imp, ε), q̇(t

−
imp, ε)

)
.

The upper subderivative of J in the direction δq(t) is given by

J↑ (·, q̂(t)) =
∫ t−imp

t0

∂L

∂q
(q(s), q̇(s))δq(s) ds+

∫ tf

t+imp

∂L

∂q
(q(s), q̇(s))δq(s) ds.

The upper subderivative of J in the direction δq̇(t) is given by

J↑
(
·, ˆ̇q(t)

)
=
∫ t−imp

t0

∂L

∂q̇
(q(s), q̇(s))δq̇(s) ds+

∫ tf

t+imp

∂L

∂q̇
(q(s), q̇(s))δq̇(s) ds.

(30.14)
After applying the du Bois–Reymond lemma twice in (30.14), this directional
derivative can be related to the boundary variations δq(t+imp), δq(t−imp) and to
the variation in generalized positions δq(t) on the interior of a time domain
[a, b]: ∫ b

a

∂L

∂q̇
δq̇(s) ds =

∂L

∂q̇
(q(b), q̇(b))δq(b)− ∂L

∂q̇
(q(a), q̇(a))δq(a)−

∫ b

a

d

dt
∂L

∂q̇
δq(s) ds.

The upper subderivative of J in the direction δq(t+imp) then becomes

J↑
(
·, q̂(t+imp)

)
=

(
−
(
∂L

∂q̇

)+

+ λ+ D

)
δq(t+imp).

Similarly, the upper subderivative of J in the direction δq(t−imp) can be stated
as
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J↑
(
·, q̂(t−imp)

)
=

((
∂L

∂q̇

)−
+ λ− D

)
δq(t−imp).

The vectors λ+ and λ− are dual multipliers which are restrained to +
0 R1×m.

The upper subderivative of J in the direction δt−imp is given by

J↑
(
·, t̂+imp

)
=
(
−L(q(t+imp), q̇(t+imp)) + λ+ D q̇(t+imp)

)
δt+imp. (30.15)

The upper subderivative of J in the direction δt+imp is given by

J↑
(
·, t̂−imp

)
=
(
L(q(t−imp), q̇(t−imp)) + λ− D q̇(t−imp)

)
δt−imp. (30.16)

As a result of the analysis, the following variational inequality (VI) is obtained:

lim inf
ε→ 0+

J(ε)− J̃(0)
ε

= (30.17)

(
L̃− + λ̃− D̃˜̇q(t̃−imp)

)
δt−imp +

∫ t̃−imp

t0

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
(q̃, ˜̇q)δq(s) ds

+
(
−L̃+ + λ̃+ D̃ ˜̇q(t̃+imp)

)
δt+imp +

∫ tf

t̃+imp

[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
(q̃, ˜̇q)δq(s) ds

+

⎛⎝λ̃+ D̃−
(
∂L̃

∂q̇

)+
⎞⎠ δq(t+imp) +

⎛⎝λ̃− D̃ +

(
∂L̃

∂q̇

)−⎞⎠ δq(t−imp) ≥ 0.

Since all variations are independent of each other, the VI has to be ful-
filled by every variational expression as stated in Theorem 2 in the Ap-
pendix. Since J̃ is subdifferentially regular, the fulfillment of each VI for each
expression separately is equivalent to the fulfillment of the VI as cited in
(30.17). By the application of the Lebesgue dominated convergence theorem
on the integrals in (30.17), the Euler–Lagrange equations are obtained in the
almost everywhere sense as given in (30.1). By assumption A.1 the varia-
tions of pre-impact position and post-impact position have to be of equal
magnitude and direction, and therefore are not independent of each other,
δq(t+imp) = δq(t−imp) = δq(timp).

By assumption A.2 the variations δt−imp and δt+imp have to be of equal
magnitude and direction, and therefore are not independent of each other,
δt+imp = δt−imp = δtimp. By making use of the dependence of the impact position
variations, one obtains⎛⎝(λ̃+ + λ̃−) D̃−

(
∂L̃

∂q̇

)+

+

(
∂L̃

∂q̇

)−⎞⎠ δq(timp) ≥ 0. (30.18)

By making use of the dependence of the time variations, the following VI is
obtained:
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L̃− + λ̃− D̃˜̇q(t̃−imp)− L̃+ + λ̃+ D̃ ˜̇q(t̃+imp)

)
δtimp ≥ 0. (30.19)

Since the variations δq(timp) are unrestrained, the following is required in
order for the VI (30.18) to hold:(

∂L̃

∂q̇

)+

−
(
∂L̃

∂q̇

)−

= (λ̃+ + λ̃−) D̃. (30.20)

Since the variations δq(timp) are unrestrained, the following is required in
order for the VI (30.19) to hold:

L̃+ − L̃− = λ̃− D̃˜̇qT (t̃−imp) + λ̃+ D̃ ˜̇qT (t̃+imp). (30.21)

From the comparison of the equations given in (30.20) and (30.21) with the
momentum balance (30.2) and the energy balance (30.5), the relations given
in (30.22), (30.23) follow immediately:

λ̃+
j + λ̃−

j = Γj , j = 1, . . . , m. (30.22)

λ̃+
j = λ̃−

j =
Γj
2
, j = 1, . . . , m. (30.23)

The element-wise equality of the dual multipliers as stated in equations
(30.23) means that the constraints given in (30.11) and (30.12) are, as ex-
pected due to the symmetrical attributes of the internal boundary, equally
weighted in determining the stationarity conditions of the impulsive action
integral. Further, each λ̃+

j and λ̃−
j is nonnegative, so the sign restriction of

each Γj is enforced, which is stated in the complementarity relation (30.3).

30.4 Appendix

The proofs of the main theorems and more detailed discussions on various defi-
nitions in subdifferential calculus of extended-value functionals can be verified
in references [Ro79], [Ro80], [Ro85], and [Ro04].

Definition 1 (upper and lower subderivatives). Let f be any extended
real-valued lower semi-continuous function on a linear topological space E,
and let x be any point where f is finite. The upper subderivative of f at x with
respect to y is defined by

f↑(x; y) = lim sup
x′−→
f x

t ↓ 0

inf
y′→ y

f(x′ + t y′)− f(x′)
t

.

The lower subderivative of f at x with respect to y is defined by
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f↓(x; y) = lim inf
x′−→
f x

t ↓ 0

sup
y′→ y

f(x′ + t y′)− f(x′)
t

,

where
x′−→
f x⇔ x′ ⇒ x ∧ f(x′) ⇒ f(x).

Theorem 1. Let f be any extended-real valued function on a linear topological
space E, and let x be any point where f is finite. Then the ”upper” subdiffer-
ential ∂f(x) is a weak∗-closed convex subset of E∗ and

∂f(x) =
{
z ∈ E∗ | (z,−1) ∈ Nepi f (x, f(x))

}
.

If f↑(x ; 0) = −∞, then ∂f(x) is empty, but otherwise ∂f(x) is nonempty and

f↑(x ; y) = sup { 〈 y, z〉 | z ∈ ∂f(x), ∀y ∈ E} .

Analogously, the ”lower” subdifferential ∂̃f(x) is a weak∗-closed convex subset
of E∗ and

∂̃f(x) =
{
z ∈ E∗ | (z,−1) ∈ Nhypo f (x, f(x))

}
.

If f↓(x ; 0) =∞, then ∂̃f(x) is empty, but otherwise ∂̃f(x) is nonempty and

f↓(x ; y) = inf
{
〈 y, z〉 | z ∈ ∂̃f(x), ∀y ∈ E

}
.

Definition 2 (subdifferential regularity). A function f is called subdif-
ferentially regular at x if f is finite at x and

lim inf
y′ → y
t ↓ 0

f(x + t y)− f(x)
t

= f↑(x; y), ∀ y.

Proposition 1. Suppose that C is a smooth manifold around x in the sense
that

C = {x | gj(x) = 0, for j = 1, . . . , r},
where the functions gj are continuously differentiable around y and the gra-
dients ∇gj(x), j = 1, . . . , r are linearly independent. Then KC(x) (contingent
cone) is convex, and in fact

KC(x) = {y | 〈y, ∇gj(x)〉 = 0, for j = 1, . . . , r}.

Theorem 2. Let f1 and f2 be extended real-valued functions on E that are
finite at x. Suppose that f2 is directionally Lipschitzian at x and

{y | f↑
1 (x; y) <∞} ∩ int{y | f↑

2 (x; y) <∞} �= ∅ .

Then



www.manaraa.com

332 K. Yunt

(f1 + f2)
↑ (x; y) ≤ f↑

1 (x; y) + f↑
2 (x; y), ∀y (30.24)

∂ (f1 + f2) (x) ⊂ ∂f1(x) + ∂f2(x) . (30.25)

Equality holds in (30.25) if f1 and f2 are also subdifferentially regular. It also
holds in (30.24) if in addition f↑

1 (x; y) and f↑
2 (x; y) are not −∞ (i.e., ∂f1(x)

and ∂f2(x) are nonempty), and in that event f1+f2 is likewise subdifferentially
regular.
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31.1 Main Equations of Elastostatics

Let consider a homogeneous, linearly elastic body, which in three-dimensional
(3-D) Euclidean space R3 occupies volume V with smooth boundary ∂V . The
region V 3 with a
C0,1 Lipschitzian regular boundary ∂V . The boundary contains two parts
∂Vu and ∂Vp such that ∂Vu ∩ ∂Vp = ∅ and ∂Vu ∪ ∂Vp = ∂V . On the part
∂Vu are prescribed displacements ui(x) of the body points and on the part
∂Vp are prescribed tractions pi(x), respectively. The body may be affected by
volume forces bi(x). We assume that displacements of the body points and
their gradients are small, so its stress-strain state is described by the small
strain deformation tensor εij(x). Then differential equations of equilibrium in
the form of displacements may be presented in the form

Aijuj + bi = 0, Aij = μδij∂k∂k + (λ+ μ)∂i∂j ∀x ∈ V, (31.1)

where λ and μ are Lamé constants, μ > 0 and λ > −μ, and δij is the Kronecker
symbol.

If the problem is defined in an infinite region, then solution of the equa-
tions (31.1) must satisfy additional conditions at infinity in the form

uj(x) = O(r−1), σij(x) = O(r−2) as r →∞, (31.2)

where r =
√
x2

1 + x2
2 + x2

3 is the distance in the 3-D Euclidean space.
If the body occupied a finite region V with the boundary ∂V , it is necessary

to establish boundary conditions. We consider the mixed boundary conditions
in the form

ui(x) = ϕi(x) ∀x ∈ ∂Vu,
pi(x) = σij(x)nj(x) = Pij [uj(x)] = ψi(x) ∀x ∈ ∂Vp.
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The differential operator Pij : uj → pi is called the stress operator. It
transforms displacements into tractions. For homogeneous anisotropic and
isotropic media they have the forms

Pij = λni∂k + μ(δij∂n + nk∂i),

respectively. Here ni are components of the outward normal vector, and ∂n =
ni∂i is a derivative in the direction of the vector n(x) normal to the surface
∂Vp.

31.2 Integral Representations and Boundary Potentials

In order to establish integral representations for the displacements and trac-
tions, let us consider Betti‘s reciprocal theorem,∫

V

(biu∗
i − b∗i ui)dV =

∫
∂V

(p∗
i ui − piu∗

i )dS. (31.3)

This theorem is usually used to obtain integral representations for the
displacements and traction vectors. To do that, we consider solutions of the
elliptic partial differential equation (31.1) in an infinite space for the body
force b∗i (x) → δijδ(x− y),

AijUkj(x− y) + δkiδ(x− y) = 0 ∀x,y ∈ R3.

Solution of this equation have to satisfy conditions at infinity (31.2). Now
considering that

u∗
i (x) → Uij(x− y) and p∗

i (x) → Pij [u∗
j (x)] = Wij(x,y),

from (31.3) we obtain the integral representation for the displacements vector

ui(y) =
∫
∂V

(pj(x)Uji(x− y)− uj(x)Wji(x,y))dS +
∫
V

pj(x)Uji(x− y)dV,

(31.4)
which is called Somigliana’s formula. The kernels Uji(x − y) and Wji(x,y)
are called fundamental solutions for elastostatics.

Applying to the differential operator Pij (31.4), we will find integral rep-
resentation for the traction in the form

pj(y) =
∫
∂V

(pj(x)Kji(x,y)−uj(x)Fji(x,y))dS+
∫
V

pj(x)Kji(x,y)dV. (31.5)

The kernels Kji(x,y) and Fji(x,y) may be obtained by applying the differ-
ential operator Pij to the kernels Uji(x− y) and Wji(x,y), respectively.
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The integral representations (31.4) and (31.5) are usually used for direct
formulation of the boundary integral equations in elastostatics.

Simple observation shows that kernels in the integral representations (31.4)
and (31.5) tend to infinity when r → 0. A more detailed analysis of the funda-
mental solutions gives us the following results [BaSlSl89], [Ba94], [MuMu05].

In the 3-D case with x→ y,

Uij(x− y) → r−1, Wij(x,y) → r−2, Kij(x,y) → r−2, Fij(x,y) → r−3.

In the 2-D case with x→ y,

Uij(x− y) → ln(r−1), Wij(x,y) → r−1, Kij(x,y) → r−1, Fij(x,y) → r−2.

The integrals with singularities cannot be considered in the usual (Rie-
mann or Lebesgue) sense. In order for such integrals to have sense, it is
necessary to take special consideration of them. We will apply the following
definitions of the integrals from (31.4) and (31.5).

Definition 1. Integrals with kernels Uij(x−y) are weakly singular (WS) and
must be considered as improper

W.S.

∫
∂V

pi(x)Uij(x− y)dS = lim
ε→0

∫
∂V \∂Vε

pi(x)Uij(x− y)dS.

Here ∂Vε is a part of the boundary, the projection of which on the tangential
plane is contained in the circle Cε(x) of radius ε with center at the point x.

Definition 2. Integrals with kernels Wij(x,y) and Kij(x,y) are singular and
must be considered in the sense of the Cauchy principal values (PV) as

P.V.

∫
∂V

ui(x)Wij(x,y)dS = lim
ε→0

∫
∂V \∂V (r<ε)

ui(x)Wij(x,y)dS,

P.V.

∫
∂V

pi(x)Kij(x,y)dS = lim
ε→0

∫
∂V \∂V (r<ε)

pi(x)Kij(x,y)dS.

Here ∂V (r < ε) is a part of the boundary, the projection of which on the
tangential plane is the circle Cε(x) of radius ε with center at the point x.

Definition 3. Integrals with kernels Fij(x,y) are hypersingular and must be
considered in the sense of the Hadamard finite part (FP) as

F.P.

∫
∂V

ui(x)Fji(x,y)dS

= lim
ε→0

( ∫
∂V \∂V (r<ε)

ui(x)Fji(x,y)dS + 2uj(x)
fj(x)

∂V (r < ε)

)
.

Here functions fj(x) are chosen from the condition of the limit existence.
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31.3 Regularization of Divergent Integrals

In order to solve the boundary integral equations numerically, we have to
transform them to finite-dimensional equations. In order to do that transfor-
mation, we have to calculate integrals with various singularities. One of the
main problems occurs in this situation is the presence of the divergent inte-
grals. They cannot be calculated in the traditional way, for example, numer-
ically using quadrature formulas. For example, the integrals with the kernels
Uij(x − y) are WS. They have to be considered as improper integrals. The
integrals with the kernels Wij(x,y) and Kij(x,y) are singular. They have
to be considered in the sense of Cauchy as PV. The integrals with the ker-
nels Fij(x,y) are hypersingular. They have to be considered in the sense of
Hadamard as FP. A traditional approach to the divergent integrals calcu-
lation may be found in [BaSlSl89, Ba94, MuMu05, TaSlSl94]. In [GuZo93,
GuZo01, GuZo02, Zo91, Zo06a, Zo06b, Zo08, ZoGo99, ZoLu98, ZoMe00] we
have developed the method of the divergent integral calculation based on the-
ory of distribution. We will demonstrate here how this approach works in the
problems of elastostatics.

31.4 Regularization of 1-D Divergent Integrals

This approach consists in application of the second Green theorem and trans-
formation of divergent integrals into regular ones. In [Zo06a] we have devel-
oped formulas for regularization of the divergent integrals with singularities
of the type r−m in the form

F.P.

a∫
−a

ϕ(x)
rm

dx

=
k−1∑
i=0

(−1)i+1 d
i

dxi
Pi
rm−k

dk−1−iϕ(x)
dxk−1−i

∣∣∣∣∣
x=a

x=−a

+ (−1)k
a∫

−a

Pk
rm−k

dkϕ(x)
dxk

. (31.6)

In 2-D elastostatics, after introducing a local system of coordinates and
simplification, all divergent integrals can be presented in the form

J0 =

b∫
a

ϕ(x) ln
1
x
dx, Jk =

b∫
a

ϕ(x)
xk

dx, k = 1, 2.

Here ϕ(x) is a smooth function that depends on the shape of the boundary
element and interpolation polynomials.

We consider first the WS integral J0. Because of logarithmical singular-
ity, we cannot use formula (31.6). Therefore, we start from the formula for
integration by parts in the form
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b∫
a

dg(x)
dx

ϕ(x)dx = ϕ(x)g(x)|ba −
b∫
a

dϕ(x)
dx

g(x)dx. (31.7)

In this formula, let g(x) = x+ x ln
1
x

,
dg(x)
dx

= ln
1
x

, then we obtain

J0 = W.S.

b∫
a

ϕ(x) ln
1
x
dx = ϕ(x)

(
x+ x ln

1
x

)∣∣∣∣b
a

−
b∫
a

dϕ(x)
dx

(
x+ x ln

1
x

)
dx.

Obviously the integral on the left is divergent and the one on the right is reg-
ular. For linear boundary elements and a piecewise constant approximation,
ϕ(x) = 1, and we get

J0 = W.S.

b∫
a

ln
∣∣∣∣ 1
x− y

∣∣∣∣ dx = (b− a) + (b− y) ln
∣∣∣∣ 1
b− y

∣∣∣∣− (a− y) ln
∣∣∣∣ 1
a− y

∣∣∣∣ ,
where a < y < b.

For the singular integral J1, to achieve regularization we will also use the

formula for integration by parts (31.7). Let g(x) = − ln
1
x

,
dg(x)
dx

=
1
x

in this
formula; then we obtain

J1 = P.V.

b∫
a

ϕ(x)
x
dx =

(
dϕ(x)
dx

x ln
1
x
− ϕ(x) ln

1
x

)∣∣∣∣b
a

−
b∫
a

d2ϕ(x)
dx2 x ln

1
x
dx.

Here, the integral on the left is also divergent and that on the right is regular.
For linear boundary elements and a piecewise constant approximation, ϕ(x) =
1, and we get

J1 = P.V.

b∫
a

dx

x− y = ln
∣∣∣∣ b− ya− y

∣∣∣∣ , a < y < b.

Finally, for the hypersingular integral J2, regularization is achieved by
means of formula (31.6) and the above result for regularization of J1. Finally,
we get

J2 = F.P.

b∫
a

ϕ(x)
x2 dx

=
(
d2ϕ(x)
dx2 x ln

1
x
− dϕ(x)

dx
ln

1
x
− ϕ(x)

x

)∣∣∣∣b
a

−
b∫
a

d3ϕ(x)
dx3 x ln

1
x
dx.
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Here, the integral on the left is divergent and that on the right is regular. For
linear boundary elements and a piecewise constant approximation, ϕ(x) = 1,
and we get

J2 = F.P.

b∫
a

dx

(x− y)2 = − 1
b− y +

1
a− y , a < y < b.

From this equation we can retrieve Hadamard’s example of a function that is
positive everywhere in the integration region but whose integral is negative:

F.P.

a∫
−a

dy

y2
= −2

a
, a > 0.

31.5 Regularization of 2-D Divergent Integrals

This approach consists in application of the second Green theorem and trans-
formation of divergent integrals into regular ones. In [Zo06a], we developed
formulas for regularization of divergent integrals with singularities of the type
r−m in the form

F.P.

∫
V

ϕ(x)
rm

dV =
k−1∑
i=0

(−1)i+1
∫
∂V

[
Δk−i−1ϕ(x)∂n

Pi
rm−2i

− Pi
rm−2i ∂nΔ

k−i−1ϕ(x)
]
dS + (−1)k

∫
V

1
rm−2kΔ

k+1ϕ(x)]dV . (31.8)

In 3-D elastostatics, after introducing a local system of coordinates and
simplification, all divergent integrals can be presented in the form

J l,mk =
∫
Sn

xl1x
m
2

rk
ϕ(x)dS, l,m = 0, 1, 2, k = 3, 4, 5.

Here, ϕ(x) is a smooth function that depends on the shape of the boundary
elements and interpolation polynomials.

31.5.1 Integrals with Kernels of the Type r−k, k = 1, 2, 3

From equation (31.8) with k = 1 we get the regularization for the WS integral

J0,0
1 = W.S.

∫
V

ϕ(x)
r
dV =

∫
∂V

[
ϕ(x)

rn
2r
− r∂nϕ(x)

]
dS+

∫
V

rΔϕ(x)dV . (31.9)
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Here rn = (xα − yα)nα and the summation convention applies to repeated
indices α = 1, 2. The integral on the left is divergent and the ones on the right
are regular.

For the piecewise constant approximation, ϕ(x) = 1, and circular area, we
can calculate this integral analytically. Introducing polar coordinates, we will
get

J0,0
1 =

1
2

∫
∂Sn

rn
r
dl =

2π∫
0

r

r
rdϕ = πr.

In order to regularize the singular integral, we will use the relation
1
r2

=
1
2
Δ (ln r)2. Then in the same way we get∫

V

ϕ(x)
r2

dV =
1
2

∫
∂V

(
ϕ(x)

2rn ln r
r2

− (ln r)2 ∂nϕ(x)
)
dS+

1
2

∫
V

(ln r)2Δϕ(x)dV .

(31.10)
The volume integral on the right is WS. Taking into account relation (ln r)2 =
r2

6
Δ (ln r)4, we obtain regularization for this WS integral∫
V

(ln r)2Δϕ(x)dV =
1
6

∫
∂V

(
2Δϕ(x)rn (ln r)3 − r2 (ln r)4 ∂nΔϕ(x)

)
dS

+
1
6

∫
V

r2 (ln r)4Δ2ϕ(x)dV .

For a piecewise constant approximation, ϕ(x) = 1, and circular area, we
can calculate the singular integral in (31.10) analytically. Introducing polar
coordinates, we will get

J0,0
2 =

∫
∂Sn

rn ln r
r2

dl =

2π∫
0

r ln r
r2

rdϕ = 2π ln r.

Finally, from equation (31.8) with k = 3, we get the regularization for the
hypersingular integral∫

V

ϕ(x)
r3

dV =
∫
∂V

[
Δϕ(x)

rn
2r
− ϕ(x)

rn
r3
− 1
r
∂nϕ(x)− r∂nΔϕ(x)

]
dS

+
∫
V

rΔ2ϕ(x)dV . (31.11)

For a piecewise constant approximation, ϕ(x) = 1, and circular area, we
can calculate this integral analytically. Introducing polar coordinates, we will
get



www.manaraa.com

340 V.V. Zozulya

J0,0
3 = −

∫
∂Sn

rn
r3
dl = −

2π∫
0

r

r3
rdϕ = −2π

r
.

Now using equation (31.8), any divergent integral with kernels of the type
1
/
rkfor any positive integer k can be calculated.

31.5.2 Integrals with Kernels of the Type
x2

α

rk
, k = 3, 4, 5

The WS integral with kernel
x2
α

r3
is calculated taking into account the equation

x2
α

r3
=

1
3

(
2
r
−Δx

2
α

r

)
. It is easy to show that

J2,0
3 = W.S.

∫
V

ϕ(x)
x2

1

r3
dV =

2
3
W.S.

∫
V

ϕ(x)
r
dV − 1

3
W.S.

∫
V

ϕ(x)Δ
x2

1

r
dV .

(31.12)
The first integral here is already calculated in (31.9). The second one may be
presented in the form∫

V

ϕ(x)Δ
x2

1

r
dV

=
∫
∂V

[
ϕ(x)

(
2n1x1

r
− x

2
1rn
r3

)
− x

2
1

r
∂nϕ(x)

]
dS +

∫
V

x2
1

r
Δϕ(x)dV .

Combining the last two equations, we finally get

J2,0
3 =

1
3

∫
∂V

[
ϕ(x)

(
2n1x1

r
− x

2
1rn
r3

+
rn
2r

)
−
(
x2

1

r
+ r
)
∂nϕ(x)

]
dS

+
1
3

∫
V

(
x2

1

r
+ r
)
Δϕ(x)dV .

For the piecewise constant approximation, ϕ(x) = 1, and in a circular area,
we can calculate this integral analytically. Introducing polar coordinates, we
get

J2,0
3 =

1
3

∫
∂Sn

(
x2

1rn
r3

− 2x1n1

r
+

2rn
r

)
dl

=
1
3

⎛⎝ 2π∫
0

(r cosϕ)2 r
r3

rdϕ −
2π∫
0

2r (cosϕ)2

r
rdϕ + 2

2π∫
0

r

r
rdϕ

⎞⎠ = πr.
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The singular integral with kernel
x2
α

r4
is calculated taking into account that

Δ
x2
α

r4
=

1
4

(
2
r2
−Δx

2
α

r2

)
. In this case,

J2,0
4 = P.V.

∫
V

ϕ(x)
x2

1

r2
dV =

1
4

∫
V

ϕ(x)
(

2
r2
−Δx

2
1

r2

)
dV

=
1
2

∫
V

ϕ(x)
r2

dV − 1
4

∫
V

ϕ(x)Δ
x2

1

r2
dV .

The first integral here is already calculated in (31.10). The second one may
be presented in the form∫

V

ϕ(x)Δ
x2

1

r2
dV

=
∫
∂V

[
ϕ(x)

(
2n1x1

r2
− 2x2

1rn
r4

)
− x

2
1

r2
∂nϕ(x)

]
dS +

∫
V

x2
1

r2
Δϕ(x)dV .

Combining the last two equations, finally we will get

J2,0
4 =

1
2

∫
∂V

[
ϕ(x)

(
x2

1rn
r4

− n1x1

r2
+
rn ln r
r2

)

−
(

(ln r)2

2
− x2

1

2r2

)
∂nϕ(x)

]
dS +

1
4

∫
V

(
(ln r)2 − x

2
1

r2

)
Δϕ(x)dV .

For the piecewise constant approximation, ϕ(x) = 1, and circular area, we
can calculate this integral analytically. Introducing polar coordinates, we will
get

J2,0
4 =

1
2

∫
∂Sn

[
x2

1rn
r4

− x1n1

r2
+
rn ln r
r2

]
dl

=

2π∫
0

(r cosϕ)2 r
r4

rdϕ −
2π∫
0

r (cosϕ)2

r2
rdϕ +

2π∫
0

r ln r
r2

rdϕ = 2π ln r.

The hypersingular integral with kernel
x2
α

r5
is calculated taking into account

that
x2
α

r5
=

1
3

(
2
r3
−Δx

2
α

r3

)
. In this case, it is easy to show that
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J2,0
5 = F.P.

∫
V

ϕ(x)
x2

1

r5
dV =

1
3

∫
V

ϕ(x)
(

2
r3
−Δx

2
1

r3

)
dV

=
2
3

∫
V

ϕ(x)
r3

dV − 1
3

∫
V

ϕ(x)Δ
x2

1

r3
dV .

The first integral here is already calculated in (31.11). The second one may
be presented in the form∫

V

ϕ(x)Δ
x2

1

r3
dV

=
∫
∂V

[ϕ(x)
(

2n1x1

r3
− 3x2

1rn
r5

)
− x

2
1

r3
∂nϕ(x)]dS +

∫
V

x2
1

r3
Δϕ(x)dV .

Combining the last two equations, we finally get

J2,0
5 =

2
3

∫
∂V

(
ϕ(x)

(
n1x1

r3
− rn
r3
− 3x2

1rn
2r5

)
−
(

1
r

+
x2

1

r3

)
∂nϕ(x)

)
dS

+
2
3
W.S.

∫
V

(
1
r
− x

2
1

r3

)
Δϕ(x)dV .

The volume integral here is WS. Its regularization may be achieved using the
equations (31.9) and (31.12). For the linear boundary element and piecewise
constant approximation, ϕ(x) = 1, and circular area, we can calculate this
integral analytically. Introducing polar coordinates, we get

J2,0
5 =

∫
∂Sn

(
2rn
3r3

+
2x2

1rn
3r5

− x1n1

r3

)
dl

=
2
3

2π∫
0

r

r3
rdϕ+

2
3

2π∫
0

(r cosϕ)2 r
r5

rdϕ −
2π∫
0

r (cosϕ)2

r3
rdϕ = −π

r
.

31.5.3 Integrals with Kernels of the Type
x1x2

rk
, k = 3, 4, 5

The WS integral with kernel
x1x2

r3
is calculated using equation (31.8). Taking

into account that
x1x2

r3
= −1

3
Δ
x1x2

r
, it is easy to show that

J1,1
3 = W.S.

∫
V

ϕ(x)
x1x2

r3
dV

=
1
3

∫
∂V

[
ϕ(x)

(x1x2rn
r3

− r∗
r

)
+
x1x2

r
∂nϕ(x)

]
dS − 1

3

∫
V

x1x2

r
Δϕ(x)dV .
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Here r∗ = x1n2 + x2n1.
For a piecewise constant approximation, ϕ(x) = 1, and for a circular area,

we can calculate this integral analytically. Introducing polar coordinates, we
get

J1,1
3 =

1
3

∫
∂Sn

[x1x2rn
r3

− r∗
r

]
dl

=

2π∫
0

r3 cosϕ sinϕ
r3

rdϕ −
2π∫
0

2r cosϕ sinϕ
r

rdϕ = 0.

The singular integral with kernel
x1x2

r4
is calculated using equation (31.8).

Taking into account that
x1x2

r4
= −1

4
Δ
x1x2

r2
, it is easy to show that

J1,1
4 = P.V.

∫
V

ϕ(x)
x1x2

r4
dV

=
1
4

∫
∂V

[
ϕ(x)

(
2x1x2rn
r4

− r∗
r2

)
− x1x2

r2
∂nϕ(x)

]
dS

−1
4

∫
V

x1x2

r2
Δϕ(x)dV . (31.13)

For a piecewise constant approximation, ϕ(x) = 1, and, if the area is circu-
lar, we can calculate this integral analytically. Introducing polar coordinates,
we get

J1,1
4 =

1
4

∫
∂Sn

[
2x1x2rn
r4

− r∗
r2

]
dl

=
1
4

2π∫
0

2r3 cosϕ sinϕ
r4

rdϕ − 1
4

2π∫
0

2r cosϕ sinϕ
r2

rdϕ = 0.

The hypersingular integral with kernel
x1x2

r5
is calculated using equa-

tion (31.8). Taking into account that
x1x2

r5
= −1

3
Δ
x1x2

r3
, it is easy to show

that
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J1,1
5 = F.P.

∫
V

ϕ(x)
x1x2

r5
dV

=
∫
∂V

[
ϕ(x)

(x1x2rn
r5

− r∗
3r3
)
− x1x2

r3
∂nϕ(x)

]
dS

−1
3

∫
V

x1x2

r3
Δϕ(x)dV .

The volume integral here is WS. Its regularization may be achieved using
equation (31.13).

For a piecewise constant approximation, ϕ(x) = 1, and, if the area is circu-
lar, we can calculate this integral analytically. Introducing polar coordinates,
we get

J1,1
5 =

∫
∂Sn

[x1x2rn
r5

− r∗
3r3
]
dl

=

2π∫
0

r3 cosϕ sinϕ
r5

rdϕ −
2π∫
0

2r cosϕ sinϕ
3r3

rdϕ = 0.

In [Zo06b, Zo08, ZoGo99, ZoLu98, ZoMe00], it was shown that divergent
integrals over any polygonal area may be calculated analytically in a similar
way.
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